
■~^^p

AD/A-004 331

A MEMORY-PROCESS MODEL OF SYMBOLIC
ASSIMILATION

William C. Mann

Carnegie-Mellon University

Prepared for:

Defense Advanced Research Projects Agency
Air Force Office of Scientific Rr search

April 1974

DISTRIBUTED BY:

KTm
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

■ i - • ■ ■ - ■ — - ■ -
-.——MMMM

■ '■
111

■ *i»..

UNCLASSIFIED

jtCuniTY CL *sii^ic »'ION or THIS p*f.r rM>.«n yii.i« >ni»r«rf) AJ>//IOO¥2>l I
REPORT DOCUMENTATION PAGE

I Rtf'OH T ►.u>xUL«

AFOSR - TR - 7 5 - C 1 3 2

KKAD INSTRVCTIONS
BEFORE COMPLETING i-ORM

l COVT ACCtSilON NO

4. TITLE f«.<«sU6«ii.j A MEMORY-PROCICSS MODEL OF SYMBOLIC

ASSIMILATION

7. AUTMOR(»J

'.Jilliam C. Mann

». PERf ORMINO ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, PA 15213

J RECIPIENTS CAT AL06 NUMUtR

J. TYPE O»" REPORT ft PERIOD COVERED

Interim

«. PERFORMING ORG. REPORT NUMBER

ft. CONTRACT OR GRANT NUMBERfiJ

F4462O-.73-C-0074

II. CONTROLLING OFFICE NAME AND ADDftESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, VA 22209

10. PROGRAM ELEMENT. PROJECT. TASK
AREA « WORK UNIT NUMBERS

61101D
AO-2466

12. REPORT DATE

April 1974

U. MONITORING AOf.NCv NAME ft ADORESSfl/ ditltfnl /rom Con(fo(l/n4 Ottif)

Air Force Office of Scientific Research (NM)

1400 Wilson Blvd
Arlington, VA 22209

U. NUMBER OF PAGEt

■atf-
15. SECURITY CLASS, (el (hi» itpotl)

UNCLASSIFIED

(Sa OECLA5SIF1CATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT fo< Ihl» KcpoH)

Approved for public release; distribut:'Dn unlimited.

«7. DISTRIBUTION STATEMENT (ol th» ittlrtcl »nfrtd In Block 30. II dlll*r»nl Iron R»potl)

It. SUPPLEMENTARY NOTES
Seprcduccd by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department cl comm»fC«
Spnnglxld, VA. 22151

«9. KEY WORDS (Conlinu* on irvtrtt tld» II neemttmry and Idenllly by block number)

20. ABSTRAC i rCanUnu» on tevtree tide II neceeeery mnd Ideniily by block number) ye describe research On prob-
lems of using knowledge to make available information useful, which we call "as-
simHation" problems. The resulting theory contributes to psychology as a model
of human short term memory, and to information science as an clfective collection
of new gent;ral methods. The vehicle for study is a computer program, called the
Slate systc-n, which manipulates knowledge and experience represented as labeled

directed graphs, ^e seek to understand how people isolate, identify and remember
complex objects, given information which is noisy, loosely structured, incomplete
tld which mav represent several obiccts rather th.nn one. People somehow organize

(-
:

.

. . - ■ - ■

-—" —

•batrM* (continued)

infoi ...cion into meanlnrful ualtl and hold organized information for itmeJiate use
in a way that depends on its orRanization. The Slate system represents a particular
selection from an infinity of possible models for such activities. It embodies a
memory management method, a notion of a meaningful unit of information, and pro-
cesses^which relate synthetic knowledge to synthetic experience. We compare the
system s performance on a broad range of experimental tasks, so that there is a
genuine issue of whether its methods will work at all. The tasks include a syn^
thetic noisy speech task in which response to syntactic and semantic structure Is
sought a digit-encoding ordered recall task and a free recall chunking task Both
the qualitative features of the range of human performance and the detailed memory
capacity behavior are studied. Representing those psychological experiments does
not stretch the system to its limits. Another group of tasks having significant
non-sequential structure is used to increase the diversity of assimilation prob-
lems studied. Discovering control structure constructs in compiled ins^rucHo-
streams, completing partial control structure descriptions, and interpreting the
connectivity of the Neckcr cube are performed by the same system. These tasks are
used to investigate the power of its graph-processing methods. A single constuc-
tive partial mathc method is used in performing all of the tasksj.

■ - -- —-■■■--■'- - . — ^ - - - - - - - "' "

A MEMORY-PROCESS MODEL OF SYMBOLIC ASSIMILATION

William C. Minn

APRIL 1974

1

Ph. D. Th«sis

CsnpuUr Seltne« Dapartmsr.t

Carn«gi«-M«llon Univarsity

Pittaburgh, Psnntylvania

' and is
■ ., 13012 (7b).

D D C

JlksisinrE
D

. [SEARCH (Ai'C)

I ••

■

■ ... , '.:

.l!:,- tion Officer
This research was support'..■tl h\ the Advanced Research Projects Agency of the
Office of the Secretary of defense under contract F44()20-73-c-0074.

- ■ -—~~i» lib i i fi ■ —a^^^MMMMM — \m mtmmmiami

wmmr**immr*m* m^mr*mm^***

TABLE OF CONTENTS

CHAPTER TITLE

ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMZNTS

LIST OF FIGURES

1

?

3

5

6

7

GENERAL INTRODUCTION

STUDY OF SHORT TERM MEMORY

AN INTERFERENCE EXPERIMENT WITH CHUNKING

DELIBERATE CODING AND SHORT TERM MEMORY

CHUNKING AND AUDIO PERCEPTION

COMPARISON TO OTHER MODELS OF STM

PSYCHOLOGICAL SUMMARY AND THEORY

8

9

10

u
12

13

STUDY OF ASSIMILATION METHODS

DISCOVERING CONTROL STRUCTURE IN MACHINE CODE

COMPLETING CONTRC. STRUCTURE DESCRIPTIONS

SEEING THE NECKER CUBE

REPRESENTATION OF INFORMATION

CHUNK PROCESSING, HEURISTICS AND EVALUATION

IV

■ ■ - - - - -

 . _

im~ »

14 TASK PROCESSING

15 S <STEM USE OF TIMF

16 REINTERPRETATION OF THE SLATE SYSTEM AS

A SET OF PRODUCTION SYSTEMS

17 GENERALITY

18 COMPARISON TO OTHER SYSTEMS

19 CONCLUSIONS

BIBLIOGRAPHY

--

WMOTH""""'*^m" ■ m'

mmmmmmmm* ■

■■«UM im n mimw im^nmm**^*^**rr**^—v..Mwv**

ACKNOWLEDGEMENTS

Th« fvar of th« Lord is th« baginning of knowlsdg«.

Proverbs 1:7

Special thanks are due to my advisor, Allen Newr'1, for generous gifts of time and

patience, and to tne many people who provided the generous computational support

wLch made this kind of exploration possible. I am grateful to the other members of my

thesis committee, Raj Reddy, William Chase and especially Herbert Simon, for their

repeated attention and guidance. The work has bean supported in major part by the

Advanced Research Projects Agency, and also m part by the Alcoa Foundation and IBM

Corporation.

The early encouragement of Albert Schild is gratefully acknowledged, and special

thanks go to my family, who have been helptul in hundreds of ways.

VI

LIST OF FIGURES

Figure l.l - Assimilating Phenomena for a Problem Solver

Figure 1.2 - Major Information Flows In The Slate System

Figure 1.3 - Sequence C, A, T Has Been Received

Figure 1.4 - Chunk for the Word "ACT"

Figure 1.5 - Attempt to Treat C, A, T as ACT

Figure 1.6 - ChunK for the Word "CAT"

Figure 1.7 - Successful Attempt to Treat C, A, T as CAT

Figure 2.1 - Necker Cube

Figure 3.1 - Major Program Steps for Word Recall

Figure 4.1 - Miller's Graph of Smith's Memory Span Data

Figure 4.2 - Box-of-Blocks Analogy to STM Capacity

Figure 4.3 - Uncoded Digit Retention Performance

Figure 4.4 - Effect of Quaternary Coding on Digit Retention

Figure 4.5 - Effect of Octal Coding on Digit Retention

Figure 4.6 - Effect of Octal Coding with Anticipation

Figure 4.7 - Fit of Smith's Data by a Shared Workspace Model

Figure 4.8 - Failure of Alternative Models to Account for Smith's Data

Figure 5.1 - "Per cent strings heard correctly as a function of

speech-to-noise ratio when the three types of

test strings are presented in mixed order."

VM

w^^m^**^m^^~^' "i i*ii —™— ~**im*mm ■ !"■ HI" I - ' I ■■M .» ™ I

VIII

F.gura 5.2 - Slate State Derivation Diagram

Figure 5.3 - Other Successful Derivations

Figure 5.4 - Performance Degradation by Exhaustion of Memory

Figure 5.5 - Derivations on Noisy Input Sequences

Figure 5.6 - Chunk Fragments

Figure 5.7 - Semant'c Agreement Condition for BIGTREE

Figure 5.8 - Semantic Disagreement Condition for SUDDENTREE

Figure 7.1 - Shared Store Information Flows

Figure 7.2 - Inherent Loop in Workspace Model

Figure 7.3 - Chunk for Two Knights in Mutual Defense

Figure 9.1 - A Short Program in Bliss Language

Figure 9.2 - Compiler Output

Figure 9.3 - One instruction Graph

Figure 9.^ - Compiler Output with Tokens

Figure 9.5 - Program Represented as a Graph

Figure 9.6 - Chunk for Identifying the Code of a Routine

Figure 9.7 - Opcode Conflict

Figure 9.8 - The Slate After Mapping One Chunk

Figure 9.9 - Chunk for Routine Call

Figure 9.10 - Chunk for (Optional) Parameter Group of Routine

Figure 9.11 - Chunk for (Optional) Multiple-Parameter Calls

- - - - ■— — ■

Figure 9.12 - Program Graph After Mapping the ChunKs for Routines

Figure 9.13 - Case Head Chunk

Figure 9.14 - Case Section Chi'nk

Figure 9.15 - Chunk for Gross Structure of • Case Statement

Figure 9.15 - Finai Additions to Slate Content

Figure 9.17 - Another Bliss Program

Figure 10.1 - Three Section Select Statement

Figure 10.2 - Result of Explicating a T^ree-section Select Statement

Figure 1C.3 - Input Grcph Describing a Two-section Case Statement

Figure 10.4 - Integer Sum Program Control Description

Figure 10.5 - Minimal Loop Specification

Figure 11.1 - Graph Representing Necker Cube

Fig -e 11.2 - Chunk Representing Necker Cube

Figure 11.3 - Graph Representing Oriented Necker Cube

Figure 11.4 - Chunk of Oriented Cube

Figure 12.1 - Strata of Groups of Operators

Figure 12.2 - Relational Property Definitions

Figure 12.3 - State Before Storing Arc

Figure 12.4 - State After Storing Arc

Figure 12.5 - Relation Interaction Definitions

Figure 13.1 - Mapping Attempt Operations

IX

'Hi^MdMkM^—. i

Figure 13.2 - Dependencies Among Operators on ChunKs

Figure 13.3 - Current Graph State for Computation

Figure 13.4 - ChunK for Support Computation

Figure 13.5 • Control Flow undar MAPCHUNK

Figure 13.6 - Arcs Added to the Graph of Figure 13.3 by

Mapping One Chunk

Figure 14.1 - Operators for Sequence TasKs

Figure 14.2 - Djpendencies Among NecKer Cube Task Operators

Figure 16.1 - Production System Interfaces

Figure 17.1 - Steps in Applying a Problem Solver

Figure 17.2 - Big Switch Generality

Figure 17.3 - Denial of Relation Arc

Figure 17.4 - Chunk for Recognizing Double Letters

- - —^K^MM. ^^mmmmtmmtmematlmm u

-■ '■■' ■ '■■■ ■■™

GENERAL INTRODUCTION

CHAPTER 1-1

The overall concern which forms the context for this research is a desire to create ?

comprehensive theorv of intelligence. We would like to know how intelligent systems

may and may not be organized, how existing intelligences manage to behave intelligently,

how to characterize tas*s which such intelligences might perform, how one intelligent

system may imitate another, and so forth. Such a theory would (as a subpart) explain

how humans think, the nature of meaning m language and a host ot other currently

obscure questions. At present, there is no such comprehensive theory, nor is there an

approach (including mine) which seems about to yield such a theory. There are not

even component theories to cover some of the major parts of the domain.

TASK

In this thesis we focus on a small but vital portion of the activity of intelligent

systems, dealing with knowledge about the world in which the system is embedded.

This world consists of a diversity of phencmena which are not under the control of the

system. The system's access to information about the phenomena is limited in a variety

of ways. Such factors as the physical limitations of sensors, the unavailability of the

past, its limitation to particular locations and times and the presence of noise are

unavoidable to the system.

'*m*r*i**mmmimwmimmm**'**'^*m ■»'"* " ' ' mtt^n^m^m i L ^■w^^ar-^'v«

A significant part of the intelligence of humans and some other systems lies in their

collections of goals and methods which nay be applied m order to pursue goals. We

can observe that the particular limitations of access to the world at any moment are

largely irrelevant to the methods and ^oals of the moment. So, for example, an

experimental subject solving i cryptarithmetic problem must cope with gaps in written

letters on the blacKbOord and with M'eet noises which obliterate parts of the

experimenter's comments, but the particular gaps and noise have little to do with the

progress of his solution.

We use the term "assimilat'On" to denote the act of converting available information

on phenomena Outside of a system into a form directly useable by problem solving

methods of the system. Figure 1.1 shows the relationships of information access

between a world, a problem solver, access paths and an assimilator.

Some o* the features of assimilation that make it a challenging problem are:

1. Incomnletoness - Only partial information is available about the
phenomena, and there is a large amount of variability in the ways in
which the information may be incompletu.

2. Compositeness - Information about mu'tiple phenomen may be
available only in mixed form.

3. Distributedness - Information about a single phenomenon may be
distributed rather than available in a single region of the available
information, so that identification of the parts and joining them into
wholes is difficult.

4. Bulkiness - Available information may be voluminous relative to
the amount of information needed to characterize the phenomena.
The bulk may arise both from redundancy of relevant information and
from the presence of information irrelevant to the methods of the
problem solver.

II Bill tm

~~m

1- 3

Problem Solver

Access Paths

Figure 1.1- Ass,m,latmg Phenomena for a Problem Solver

5. Uniqueness - The particular ensemble of available information may
always be unique in the experience of the system, thereby limiting the
methods useful for assimilating it.

6. Abstractness - The facts of interest to the problem solver may be
expressible only by multiple steps of abstraction from the available
information, being effectively in a different language.

7. Complexi'cy of Judgment - There are many kinds of evidence that
may bear on the acceptability of a characterization of available

L ■ ■ '

">" I ■■ «"^

1- 4

information. The possibility of making good characterizations may
depend on being able to respond to a diversity of kinds of evidence in
a way which tends to select highly evidenced characterizations.

^formation processes which assimilate given information are of direct interest for a

theory of general intelligence. We would like to have explicit means for performing

rany tasks which seem so trivially easy to people and yet which elude the methods

which we understand. Creating methods which can respond to the kinds of information

to which people respond turns out to be difficult. One difficulty is that representing the

problem to oe solved often seems to proviae the answer as well as the questicn. The

selection a-^d assimilation of the relevant data make the remaining steps of -^oblem

solving seem quite obvious. The processes which perform the problem preparation

need to be mended in order to capture the entire intellectual act. For example, in the

well-known "monkey and bananas" problem, which has been used as a task for a variety

Of problem solvers, the room is typically represented to the solver as three "locations,"

one where the monkey is, one where the box is, and one under the bananas. The walls,

the door, the details of the box are not represented because they are irrelevant in the

particular problem. If the monkey were physical rather than symbolic, the perception of

the box as an object separable from the floor would be part of the problem. It is not

included because the assimilation has been performed by the experimenter.

The task of an assimilator is to present to the problem solver a highly plausible

characterization of the information which it receives. The characterization should be in

a language or form useabie by the problem solver, protecting the problem solver from

the bulk and incompleteness of the received information. Since we are seeking a theory

-- - ^^__-__ mttmm

•MM. «MMMMHMffMMNNMM IM^MI» mti^mmii.mnmi <

of intelligence we are particularly interested in symbolic activity, the discrete actions

and symbol processing actions rather than continuous actions c id motor actions.

SCOPE OF STUDY

This study of assimilation seeks broadly applicable, general solutions to assimilation

problems. They are studied with relatively little coupling to important parts of their

context, namely specific sources of information, specific goals and tasks for the

intelligent system, and specific methods which must utilize assimilated information. The

sources of information useo are all rather synthetic, and the applications of the resulting

information all rather primitive. Both the generality of scope and the related separation

from process context contrast with much of the related work in both psychology and

computer science. So we should examine the choice. What kinds of results and

benefits depend directly on choosing such a general scope?

Tne potential benefits are of two kinds. The broad approach yields knowledge of

the nature of assimilation tasks. We really have very little information on whether the

differences in assimilation tasks are superficial or not, on how they differ, on how to

characterize particular tasks. This thesis provides evidence that the similarities

between assimilation tasks are substantial, that broadly applicable methods exist and

that development of those methods yields immediate benefits for the spectrum of

assimilation problems rather than being restricted to particular sensory modalities or

problem solvers.

-- .^—~J-. ^ i.. ^■kJdWMMMM - -- ----- - ■ - --**

r^f^rnK

1- 6

Another benefit is that the practical range of accomplishments of computational

nethcd; may be expanded.

We need to look for the evicence that methods developed in such circumstances are

liKeiy to be useful. Why do we supposs that when our methods are required to delivar

information to particular problem solvers, pursuing particular non-trivial goals, that such

meihods will remain relevant md effective? Surely there will be remaining unsolved

problems, some of which can be glimpsed in this thesis. Surely there are ineffective

combinations of assimilator, problem solver and task. We need evidence that

assimilation can be effective when the eventual uses of the information are unknown.

Tne feasibility of assimilating information in a manner mdeperdent of its particula'

use is easily established. Peop'e often encounter information long before taking up a

goal for which it is relevant. What they see and hear is independently characterized

and remembered, with substantial reconstruction from that characterization.

[BF71],[N67]

Natural language functions as a representation for the results of many kinds of

assimilation. Our common experience M that the language is generally adequate for

describing to others what we see and hear, that it can represent new and unique

experiences without much change in th ■ representation schema itself. So, to the extent

that human assimilation tends toward descnbable outcomes, it appears as a general

facility which is independent of goal and methods, and which spans several sensory

mortalities. In the Whorfian view, its forms limit the range of possible assimilations in a

fundamental way. [W56]

.„

■• ■ • ' ■" " -" ■PW^WW^BWP^i^^li^im^

1- 7

n is less clear to what degree assimilation methods can be developed without

reference to the characteristics of particular mfornnition sources. However, tasks which

require joint interpretation of information from sensory modalities do not seem

particularly difficult for humans. This suggest» thai use of information from more than

one modality in .»ssimilation may occur at very primitive levels. At any rate, there

seems to be litttt evidence that the nature of the problem vanes greatly from one

modality to another. [M73j

NATURE OF RESULTS

For any particular computer program which does something we can evaluate it in

two different ways, for its psychological aspects or for its information processing

aspects. We can ask:

How does this program contribute to our understanding of human

intelligence as a model of human processing'

How do the methods used in this program contribute to knowledge of

general intelligence?

In this thesis we pursue both of these questions. The psychological question is

approached by comparison of a computer program (called the Slate system) with data on

human performance from tasks posed m experimental psychology. The question of the

contribution of the methods is answered by evaluating the same program in the context

of the field of artificial intelligence. The remainder of the thesis is divided on this basis,

——

.^H...<....,,.< ., „ .,..».^.,,,«.1^, ■———>^^wp-wr»- I Jl ■ ■*|l.ll BIIH

1- 8

cnapters 2 to 7 being focused on the psychological question and chapters 8 to 18 on the

question on methods.

INTRODUCTION TO THE SLATE SYSTEM

The Slate system performs assimilation tasks by processing deeded graphs.» its

major .nformation flows are shown in Figure 1.2 . One memory, called the Slate, holds a

graph wh.ch represents the state of knowledge of the system about its given input

information. All of the input information is deposited in this graph, and each addition to

the knowledge of the input is an expansion of this graph. The Slate is the system's

representation for human short-term memory.

A second memory (called bulk memory) holds many inull directed graphs (cilled

chunks.) This memory is the system's representation for human long-term memory.

Unoer the general direction of a task control process for the particular task at hand, five

kinds of processes affect the content of the Slate.

1. Input processes, which insert information about the world of

phenomena external to the system.

2. A search process, which seeks chunks in bulk memory which

resemble parts of the Slate content.

» We presume that the reader is familiar with the notion of a directed graph. For
examples, see some of the "arrow diagrams" which are numerous in this thesis.

m«'mWIB*4H

3. A match process, which .nvestigates the resemblance between the
chunKi located by the search process and the Slate content. It judges
wneiher, according to a combination of several rules of evidence,
some part of the State content can be treated as a subpart of the
chunK, (i.e. whether the concept represented by the chunK is
plausibly also represented in the Slate.) If so, the entire chunk is used
to expand tht Slate content by a Kind of copying, completing the
match operation, and a new search and match attempt is begun.

4. A Slate space management process, which limits the content of the
Slate to a fixed number of chunks. A chunk in the Slate is a named
set of arcs. Each arc may be in one or more chunks. When the
match process puts a raw chunk in the Slate, all the arcs of the other
chunks which overlap it are included in the new chunk. Wh;n the
number of chunks in the Slate exceeds the limit, the space
management process selects one for removal. A chunk is removed
from the Slate by changing the status of each arc in the Slate that
was m the chunk, and by removing from the Slate any arch that was in
only the chunk bemg removed. Seiect^on of a chunk for removal ts
random under certain const'amts.

ri. Output processes rn fome tasks scan the Slate, producing output
(corresponding to respons» bv experimental subjects) and record in
the Slate the fact that the OJtpui w.^s produced.

Most of the mteiestmg fea'jres of the system arise from the character of the match

process and the space mano^ement process. Two of these features are illustrated in

the example below; the role of conflict m directing assimilation, and the relationship

between successful matching and use of memory space.

•~mmm ^~ wim

1- 11

EXAMPLE

The Slate system has received as input the three letter sequence C, A,
T, It attempts to relate this sequence to stored knowledge, first trying a
chunK for the word ACT and then for the word CAT.

The graph created by the input process to r0present the sequence is
shown in Figure 1.3 .» It consists of three chunks, indicated here by the

precedes
-» +

G
0
E

Fiyurc 1.3- Sequence C, A, T Has Been Received

groups of dots on the arcs.

The chunk for the word ACT is shown in figure 1.4 . The system tries
to reconcile the two by finding good correspondences of some of the
tokens, represented m the figures by ♦'s.

There are several ways in which the correspondences might be made.
The simplest is to let the tokens correspond m the left-to-nght order shown
in the figures. The result, after copying, would be the graph in Figure 1.5 .
It refuses to form this graph because it contains tokens for events having
more than one symbol. The system has enough knowledge of the "has
symbol" relation to require that there be at most one such arc from any

• A unique name is given to each vertex in the Slate system. For simplicity, names of
tokens which do not appear in this text are replaced by + signs in most figures.

■ ■
Mlk.

HIV*« '" ■" ' ' ' ' « m^mmm^*!** | *II ■

1- 12

ACT 4-
hss symbol

precedes

o

E

M

A

-P +

o

£

w

Has typo
■♦ NOUN

precede";
-• +

o

Ü
M
re

Figure 1.4- Chunk For The Word "ACr

- - ■ —■
_ .. ,..■— , ^..^. „■-■;■_. . ._ .--^-^

 . ■<< < ■

1- 13

« APT ^ hat -ymb0i has typo ♦ ACT ^. + ^ N0UN

precedes
+ --

precedes

F-gure 1,5 - Attempt To Treat C. A, T as ACT

■♦ +

o
XI
E
>>
Si

in
TO
x:

■ ■■---■■—'■■ -■■ ■ ..- -.^ I I Ml^^ilB 1 II

1- 14

particular vertex in any of its graphs (There are several other possible
correspondences which the system rejects based on its knowledge of the
"precedes" relation as a total order relation)

There are no acceptable ways to assimilate the sequence C, A, T ts the
word ACT, and so the effort to use the chunk for ACT fails and has no
effect on the Slate content. The chunk for ACT is rejected despite the
positive evidence (letters, length, ending) that it might be correct. On the
other hand, the chunk for the word CAT, shown in figure 1.6, can be used
without violations of any of these restrictions. The resulting Slate content
is shown in Figure 1.7, in which four new arcs have been copied into the
Slate.

All of the arcs in the Slate are in one new chunk. The three chunks
wmch it has overlapped are marked as available for deletion. The way that
the three have been combined into one chunk illustrates the system's
capacity to recognize and treat as single units configurations which
correspond to chunks in its bulk memory.»

The example above represents the basic actions of the match process and Slate

space management.

» For simplicity one detail has been left out of the chunks shown in the figures. An arc
on '.he relation "is the source of" relates the vertex representing the entity (m this case
the word) to a unique constant vertex fo; each chunk. See chapter)2.

^a^^MMMMMMMaaMM J

1- 15

E
w
w
N

-C

has symbcl
CAT 4-- +

,/

/

//
n
a
.0 v / 3

#/ 1.1

/ 8
/ X

precedes \

has type
■♦ NOUN

precedes
♦ +

£
■

o
I/)
x

c

£
V)

C

o

£
M

n;

F.gure 1.6 - Chunk for the Word "CAT"

♦ CAT t h^" ^S±2! + > NOUN

precedes
♦ +

>
M
U re

A T

Figure 1.7 - Successful Attempt to Treat C, A, T as CAT

MHaaaMMMaaMMla

STUDY OF SHORT TERM MEMORY

CHAPTER 2-1

SCOPE

In this thesiä we seek to develop a model of how certain functions of human

intelligence are accomplished. The functions arise in "short term memory" experiments

m experimental psychology, where they are grouped under the term "chunking."

The usual experimental arrangement, which is followed in all of the specific

experiments treated below, is this: One or more subjects is given a repetitive memory

task. Each cycle of the task consists of a presentation of information, its withdrawal,

and a reproduction of some of the information by the subjeot. Each cycle typically lasts

less than a minute. The joint variations of reproduction performance and presentation

condition! over large numbers of presentations are characterized in the results.

Several features found frequently in interpretations of such experiments can be

taken as a sketch of the idea of short term memory (STM):

1. The subject has an approximately constant capacity of items,
called "chunks."

2. A variable amount of symbclic content is in a chunk, determined
primarily by past experience with closely related symbols.
3. The subject has relatively fast access to his "long term memory"
for purposes of retrieving a chunk.
4. He has much slower access to long term memory for purposes of
depositing a chunk.

------ - - - — -- ■———^—««—»«-^■»*-»»—

Many experimental conditions lead to speech-related error patterns or to active

rehearsal of items by the subject during the delay period.

The organization of presented information into chunks by the subject is usually

designed to be either dominated by correspondence with past experience (as in

grouping a sequence of letters or sounds to form a familiar word) or dominated by

formation of new, unfamiliar groupings (as in grouping the letter sequence

JRSTCAMLEJSPXCT, which might be presumed unfamiliar.) Of the two Kinds, we model

only the phenomena of familiar arrangements in this thesis.

One of the paradoxes of chunking is thai a subject may regularly treat a particular

set of presented elements as one chunk, part of a chunk or several chunks depending

on the arrangement of elements, so that the same elements occupy varying amounts of

memory capacity. So, for example, the letters

ERAMDLO

could be treated as up to seven chunks,

MAREOLD

as two, and

OLDMARE

as one, even though the same set of letters is involved in each case. The elements

which are units to the experimenter are not treated consistently by subjects, who tend

to group "unrelated" objects in ingenious, personally meaningful ways. Tulving, [T68] in

a review paper, noted that

"One of the important problems facing experimenters and theorists
interested in free-recall ~ as well as those concerned with other memory
tasks — lies in the specification of the functional units of material that are

-■ ■■■ ---• -■

remembered and -ecalled. We may be ignorant as fu the exact
S(uDject's)-units in any given situation, and we may have to tsmponze by
counting such easily identifiable units as tngrams or words, but sooner or
later we have to come to grips with the S-umts in an objective fashion. In
the long run, nothing will be gamed by pretending that gaps befwe&n
sequences of printed leiiers or betwee.i sequences of spoken phonemes
define the units of information processed by the human memory system.

Smce chunking is included in such a broad spectrum of behavior, a theory which

describes how chunking is performed can be expected to account for parts of many

experiments and for the entirety of a few.

This thesis presents an account of several ohenomena related to chunking, including

memory-capacity/ coding effects, some interference effects, and some joint effects of

noise, syntax and meaning on reproduction of sequences of word elements. The method

of investigation is to study an explicit model of chunking processes, represented as a

computer program. The experimental conditions for the subjects of several published

experiments are presented to the program. Its 'lehavior corresponds in significant ways

to the experimental results. The properties of the program which create or preveni

particular correspondences are theoretically significant. The model of STM is

intentionally a partial one, so that for example the processes by which existing chunks

are accepted or rejected as immediately relevant are represented, but the creation of

new chunks from novel experiences is not.

The presentation of the compu'er program is reserved to the non-psychological

chapters. There it is distributed, with various parts and attributes being introduced

where they become instrumental. A complete presentation of the program is in chapter

13.

mttrn

r

2 - 4

PROBLEMS

The psychological questions which this work addresses are:

1. How is chunking possible at all? What operations on the
information given to the subject would be sufficient to produce the
behavior in question?

2. How are particular chunks selected for use by subjects? Why «re
other similar chunks not used?

3. How can chunks be selected based on information which is
incomplete in a-pnori-unpredicta'jl» ways?

4. How s measured STM capacity (digit span or similar) related to
underlying storage capacity and processes?

5. Do different kirds of chunks require different chunking processes?

6. What parts of the chunking task must be performed serially, and
what parts are suitable for parallel performanra?

METHODS

The methods used to deal with the problems cited above all center around the

creation and study of a computer progrbm in correspondence to prior STM experiments

conducted with human subjects. In each case tne program acts as a scrutable subject,

performing in ways which correspond to the performance of the human subjects.

This approach is one of two commonly called "simuUtior." In the other, a program is

out into part-by-part correspondence with a Knovn system, such as a telephone

exchange, so that the program performance may be studied. The aim is to answer

questions about the performance of the simulated system. Here we put program

performance in correspondence wi'.h human performance with the aim of answering

questions about the nature of the human sys'.em. A principal advantage of using a

P'-og'am as a theoretical vehicle is that the consequences of assumptions about how the

data could have arisen can be made observable. Done correctly, this eliminates from

consideration theories which can not possibly be made explicit, and theories which do

not in fact predict the performance which they are alleged to cover.

We use one program to cover all of the experiments studied rather than providing a

separate version for each. This contrasts with a common pract .o of developing a

»epa'ate model or set of assertions 'or each experiment or con'jrrent series, without

verifying that the model covers prior experiments as well. There is a substantial risk,

near certainty, that the models so developed will be inconsistent in w-.ys that are not

apparent from their descriptions. We would rather have s consistent model, or at least

a set of models having known conflicts, hoping that as the issues of contrast are made

known and resolved a single adequate model and theory will eventually emerge.

EXPERIMENTS

"ne human performance data for this itudy of STM ail come horn reports of

puoiished experiments. They are selected as representative of curr^i viewi of the

nature Of STM and the phenomena which evtry STM model mut' account for. We deal

with three topki below, some represented by more than one experiment. They are

arranged roughly in order of increasing complexity.

2-6

1. Interference - represented by an experiment by Gordon Bower
comparmg mte'terence ef'ects of s.ngle words and multi-word clicMes.

2. Coding - represented by Smith*! work on hit own remembering of
streams of ones and zeroes, reported by George Millcrj also by a
1965 group exper.ment in bmary encoding by PollacK and Johnson.

3. Chunking based on mcompiete information; chunking and syntax;
chunking and meaning - ah represented by Miher and Isard's 1963
experiment on recognition and memory for "sentences" heard with
noise.

in all of our psychological tasks, the information is available serially, and orde- of

events plays a significant role. This is not true of assimnation problems in general.

Visual information ,s multid.mens.onal, and auditory information can be usefully treated

as multidimensional. There ,s evidence that our knowled3e of the sequence in which

information is received is often hazy, even for auditory information.

The assimilation methods which we propose should net be restricted to dealing with

serial, tightly ordered mrormation. The limitation« of method which we accept into

psychological models should reflect limitations observed in people's performance. When

people's performance reflects their respond.ng to serial order in an experiment, a model

of their activity should provide some explicit representation of such response, since not

all tasks provide such serial structure for the subject.

There is an example of Slate system action, described in detail in chapter 11, in

which the given information describes the connectivity of the Necker Cube. (Figure 2.1

.) The system chunks the connections as a cube with a particular front face,

corresponding to attention directions from the system user. Attention may be shifted

so that the cube "reverses," that is, it is chunked with the other four corners on the

 jay

2- 7

\
A

x^
\

B
V

f-igure Ü.1 - Necker Cube

 ——————

front face. Repeated reversal follows the directed shifts of attention. The Slate

content is never jointly chunked with any corner on both a front face and a back face.

The reversing property arises directly from the conflict-handling mechanisms which are

basic to the system, and from the processes developed to deal with mis-anticipation on

Miller and Isard's task.

The point to be made here is that the psychological scope of assimilation includes

such tasks, and that building models which exclude them is at best a temporary

expedient. They are part of the activity of reconciling our knowledge about the world

with current information.

The treatment of the Necker Cube in this thesis is not a realistic simulation of human

performance, although that se3ms feasible. Rather it is a means of demonstrating the

scope of the problem, some particular properties of the Slate memories and the

effectiveness of a general approach.

———-—^_^_

AN INTERFERENCE EXPERIMENT WITH CHUNKING

CHAPTER 3 - \

The first and simplest experiment we adaress is on interference m free recall, by

Gordon Bower. [369]

"This experiment is concerned with the "chunking" hypothesis applied to
free verbal recall (cf. Miller, 1956; Tuiv.ng, 1968). For present purposes,
a chunk of material may Oe identified as a h.ghly integrated group of words,
indexed by a strong tendency for Ss to recall the words together as a unit.
The chunking nypothess asserts that free recall il limited by the number of
chunks that can be pronjeed from memory without the aid of some specific
retrieval scheme or cu:ng system such as the pegword mnemonic (cf. Wood,
1967). According to this hypothesis, recall improves over pract ce because
tne words become more strongly bonded into subjective chunks, ard several
chunks may be coa escea into a single chunk by a recursive (hierarchical)
process of group.ng subgroups. The number of chunks recalled is
approx.mately constant, wh,ie the number of experimental items per chunk
presumably increases w,th practice.

Design
METHOD

The design involved a w thm-grouo comparison of three free recall lists
Of 24 units. Each 24-unit list consisted of a set of 12 "critical" units
(words) plus 12 "fiher" units. The filler units were var,ed over the three
lists, and the hypothesis expects concomitant variation in recallability of the
12 critical unit! in the list. For the one-word l.st, the fillers were simply 12
nouns presented singly; for the three-word list, the f."ers were 12 triplets
of unrelated nouns presented as units; 'or the cliche list, the fillers were 12
familiar, three-word clicnes presented as units. The critical words and filler
units of a list were mixea for random presentation, end S freely recalled all
he couid. The chunk.ng hypothesis expects recall of the 12 critical words
to be about the same for the one-word and the cliche fillers, but
significantly poorer with the three-word fillers.

Materials and Procedur*»

The three sets of 12 critical words were unrelated nouns selected for
nigh concreteness from the norms of Paivio, Yuille, and Madigan (1968).
The one-word fillers were similarly selected by the same criteria. The 12
three-word fillers were composed of un elated nouns. The 12 cliches were

3- 2

noun phrases of high frequency (intuitivt est.mates) in Our Ss' linguistic
comr. unity. For eight of the cliches, all three words had a noun form,
although in the chche context the first two functioned as adjecti/es. These
eight cliches were: oa'-po.nt pen, mail-order catalog. Rose Bowl parade,
jirth control pill, ice cream cone. Bay Area transit, tick-tack-toe, and turtle
neck sweater. The otner tour cliches contained some adjectives and were:
Happy New Yoar, fa r-weather friend. Great Sait Lane, and good old days.
Most of the cliches have a singie semantic referent, whereas the unrelated
tt 'ee-word fillers ie.g., couch, flag, sun) have three separate referents.

The three free recall lists were composed by pairing the three
critical-word sets with the three fi.ier sets, usmg the six possible pairing
about equally often over Ss. The 12 critical words and 12 filler units were
typed in capital letters on 24 flash cares, shuffied thoroughly, and shown to
S at a rate of one card for 3 sec, with a 2-sec mtercard interval. There
was one study trial, then an immediate rtctil t^al on each of the three list"
The Ss recalled in writing, giving as many words as they could in any order.
Time allowed for recall was 96 sec tor the one-word filler list, and 192 sec
for the chche and three-word filler lists; this is calculated at 4 sec lecall
time per word on the input list. This was always more than enough time for
Ss to recall all they could.

The order of the three treatment lists within the session was
counterbalanced over Ss. The S$ were 1C undergraduates fulfilling a
service requirement for their introductory psychology course.

RESULTS

An initial observalon is that the three-word cliches were recalled in
perfect all-or-none fashion, either completely or not at all. On the other
hand, the unrelated triplets were not recallea all-or-none, Ss frequently
recalled some but not all of such triplets... Therefore, m the following, we
adopt the convention of treating a three-word cliche as a single recall unit
(i.e. 12 filler unts) but unrelated triplets as three separate recall units (i.e.,
36 filler units).

In these terms. Table 1 shows the average recall of critical words and of
filler units for the tnree lists."

The principal conclusions are drawn from various analyses of Table 1, which appears

as Table 3.4 in this chapter.

"These results support the implication of the chunking hypothesis: recall of
the critical words was about \hs same whether the other 12 units w«>re
one-word or three-word (cliche/ units, but recall was reduced if the uther
words comprised mere (than 12) chunks.

Recall of the filler units also supported the chunking hypothesis (line 2
of Table 1). Consistent with hypothesis, the cliches and one-word fillers
were equally well recalled."

To model how the subjects performed the experiment, we must model their actions

of reading rards, their means for retaining what was read, their means for reporting

what they can, and some selective means for determining what is reported and what is

not.

PROGRAM AND TASK

The Slate system performs this task by applying its operator called "RECALL

WORDS." The action of this operator is to take a sequence of symbols one at a time from

the input, storing them m an internal form in the Slate, until an end-of-sequence

indication is given. The symbols of the sequence which are retained in the Slate are

written as program output. This gross action thus corresponds to the action of an

nstructad subject who reads and reports one list. The chunks in bulk memory

correcpond to the cliches attributed to the subjects. One chunk would represent the

fact that occurrence of the three symbols ROSE BOWL PARADE in an input sequence may

be treated as one familiar unit. Appendix I gives complete examples of these chunks.

We have sketched enough of the Slate system to identify the principal

correspondences between the interference experiment and the Slate system model of it.

(Table 3.1)

^BB^M^M, - - -- - M^MBMH^^M«

3- 4

ORIGINAL EXPERIMENT SLATE SYSTEM MODEL

w0rds recognizable symbols

cliches Ordered sets of symbols which
correspond to cnunks in bulk memory

unrelated triples ordered sets of symbols which do not
correspond to chunks in bulk memory

S'Jbjec^s the Slate system

instruction of the subjects use of the "RECALL WORDS" operator
m the task

reading a word taking a symbol from the input

terminating a list taking a special sequence-termination
(by running out of cards) symbol from the input

reporting the words of a list examining the Slate content
for symbols

Table 3.1- Correspondences of Bower's Experiment and Program Replicate

The sequence of program steps is indicated m Figure 3.1.

For a list of 12 critical words and 12 three-word clichss, the cycle would be

traversed 48 times, with one new successful match on each of 12 of the traverses.

WOT Him ■

3- 5

Start

Get a cymbol

ordinary

make a chunk

terminal
report result

inrert chunk in Slate
(deleting another if necessary)

Match Slate content with bulk memory chunks

copy successfully matching chunk into Siate
(deleting another if necessary)

Figure 3.1 - Major Program Steps for Word l<ecall

RUNNING THE CORRELATE EXPERIMENT

The Slate system does not have any fixed symbol vocabularies or bulk memory

chunks. These must be defined by suitable data before the experiment is run. For

 — -- - -^—^-*... "--■ - ■ L. ._ ... _. — ---■- —

"

I. f

3- 6

convenience, we use the words of the cliches given in the article for building cliche

chunks, and the words ACE, KING, QUEEN, JACK, RUFF, DUCK, FINESSE, TRUMP, HEARTS,

SPADES, CLUBS, DIAMONDS as the unrelated critical words and filler words. Twelve

chunks corresponding to the 12 cliches are entered into bulk memory. We have an

advantage m that we can verify that words such as KiNG and QUEEN are unrelated in the

system, and that TICK, TACK, and TOE are really function.ng as separate words.

Lists of words cor"-;spondmg to tne original 48 lists can be prepared as input.

However, for the two conditions in which the bulk memory chunks do not affect the

outcome, the average number of words of each category which will rpmam in the Slate

can be calculated on the basis of their equiprobable random selection and the capacity

of tne Slate. We calculate rather than use sampling procedures to derive results where

applicable. We use 16 lists containing cliche words to verify the correct detailed

functioning of the model, and a simpler equivalent version of the system to simulate 400

subjects. Each has a random permutation of 24 items, each of which is either a

three-word cliche or a critical word. A sample list is shown in Table 3.2 below,

together with the list termination symbol.

 — -

M ■ ■' ' ■ mm i ■ ■' ll'Wiliuii». ■«■•i ii I »»«•■^Fri^""WWi^>W

KING
RUFF
FAIR WEAT,-R FRIEND
MAIL ORDER L.^TALOG
TURTLE NECK SVv£ATER
TICK TACK TOE
DIAMONDS
GOOD OLD DAYS
SPADES
ICE CREAM CONE
FINESSE
TRUMP
BIRTH CONTROL PILL
GREAT SALT LAKE

CLUBS
BAY AREA TRANSIT
BALL POINT PEN
HAPPY NEW YEAR
ROSE BOWL PARADE
QUEEN
ACE
JACK
HEARTS
DUCK
QUiT

Table 3.2- Sample System Input List

The experiment with the cl.che lists is performed by initializing the system and then

performing a cycle of clearing the Slate, reading a list like the one above, and printing

the symbols in the Slate, once for each list. Slate capacity for the series is set equal to

the single word recall capacity, 13 chunks.

• •■■■» - ^^^^^»

■ '

EVALUATIOlvl OF THE CORRELATE EXPERIMENT

The all-or-none effect for the recall of cl.che. *as observed m the program output

just as it was in the ongmal experiment. We use the same filler unit construct in

analyzing the results. Table 3.3 shows tho results of this action for the 400 lists, and

the calculated averages described above.

SLATE SYSTEM RtCALL OF CRITICAL NOUNS
AND FILLER UNITS FOR THE THREE TYPES OF LISTS

Fillers

]***__ One-word Cliches Three-word

Critical nojns 6.5 5.53 325
Filler units 6.5 6 13 9 75
Total units 13.O 11.68 13.0

Table 3.3- Slate System Recall Averages

Comparison of this table with Table 1 of the original experiment shows that the desired

gross correspondence has been achieved.

■ --^ ■ MMaHMMha^Mta - ■■ - - - ■

"^mmmmim .H *mv iiiam miimw-. —■—i- ■" -■•- —-«■«■ - "—"■' -—i-.in. . i ■■«■■'■wn-xHBDinjii i iK.W««P)w>^^«m)|lpnM^i*^w^M>aa^»OTW<<i.iiliW i | w^«^^p(Piw—■»

3- 9

RECALL OF CRITICAL TJOUNS AND FILLER UNITS
FOR THE THREE TYPES OF LISTS

Fillers

Type One-word Cliches Three-word

Critical nouns
Filler units
Total units

6.3
6.7
13.0

5.5
6.6
12.1

3.7
9.4
13.1

Table 3.4- Bower's Table 1 : Recall Averages

1.
The recall of critical words is the same in the presence
of either cliche or single word fillers,
but is lower in the presence of unrelated triples of filler words.

2.
Recall of cliche and single word fillers is about equal.

The presence of the appropriate chunks in bulk memory causes the Slate system to

organize its record of the input word sequence in such a way that the interference unit

is a chunk rather than a word.

Beyond these kiross features, which arise frim the fact that cliches are stored as

single units, the Slate model also predicts the following:

1.
Recall will be slightly lower when cliches are used as fillers
than when single words are used.

2.
Part of this loss will be in recall of cliches, and
part will be in recall of critical words.

3.
The part which represents critical words will be larger.

- -■ - -"■ — ■—— - _ .—..^-..—, ^—-^ ■....._ —^— ■ ■ ■- ■ -■ ■ ■ ■- ■■-■ -■ ■--•—

T

3- 10

We see that each of these is fulfilled in Bower's aata and that the Slate model

predicts the levels of recall rather accurately.

SHARED WORKSPACE EFFECT

The basis for these predictions, which we call the shared workspace effect, is as

follows:

For s.nglr words, no ehunkiflf occurs, sr that memory is filled by the presentation of

tre early part of the list and rerrams full for the rest of the presentation; recall equals

the number of STM spaces available.« For lists containing cliches, STM may not be full at

the end of the presentation of the list. If the list »nds with a three-word cliche, then

three spaces are used to receive the words, they are then grouped into a single chunk,

and two spaces are left available. Items from the first oart of the list are already lost,

and so cannot be used to fill these spaces. Recall is therefore reduced fo- these cases.

The workspace, STM, has been shareo by word chunks (inputs to the cliche-chunking

process) and cliche chunks (outputs from the chche-chunkmo process.)

It the list ends with a cliche followed by a critical word, rne space is left available.

Otherwise, the list ends with two critical words, and all spaces are filled at the end.

• We recognize that this number may represent an effective value produced by
composition of several process and memory resource».

-- - ■I I1M

3- 11

Considering the prObtbiiitiM of those events, the predicted reduction m recall is

1.26 items, comparable to 0.9 observed and 1.32 for the 400 simulated subjects. Since

Bower's experiment was not controlled for tre actual frequencies of various ending

patterns, the 0.9 observation may in part reflect a lower than average rate of final and

next-to-fmal cliches.

Because this recall loss it conditional on having cliches- near the ends of lists, the

critical words on the litt have more oppsrtun,t;es to be deleted from memory, while the

final cliches are protected oy their regency. Thus more of the loss is expected to

appear in the cnticcl words, as it observed.

The model makes the following further preaxtions that are not verifiable in the data:

1. The magnitude of the reduction in recall with cliches relative to the
single word case depends on the length dn words) of the Jiches used, and
on the ending configuration of tne list, according to the following

relationship:

Let the average number of reca:!ed single words be S, tne
length of the fmal chche item in a litt be C, and the position of
the final chche, counting from the end, be P. (P-l is the last
position.) Then the expected number of items to be recalled will

be:

S*P-C

if no cliche occurs m the last
C-l list positions.

otherwise.

2. The magnitude of reduction in recall with cliches is constant over
individual differences m single word recall.

3. The magnitude of reduction is also constant over changes in the number
of other cliches in the list for any particular last-cliche position.

- MftMMMMaaiteHaflHM

3- 12

ThtM predicfons should be easy to venfy * a vanety of expenments. They

.nd.cate that chunK,ng exper^ents should .ndude control for the way that the g,ven

ir'ormation ends.

These pred.ct.ons and the (it to Bower's data both oepend on the assumpt^n that

„emory spaces are used for all of the subele.ents of a cl.che. In terms of d.scuss.ons

elsewhere m th.s thes.s, th.s ,s an «su.pt.on that the subject docs not use

••ant,c.pat,on- to save memory space. We w.ll see .n the next chapter Ihrt the same

assumpt.ons allow us to pred.ct del.berate cod.ng behav.or accurately. They are

pred.ct.ons of d.fferenc.s which do not depend on assumpt.ons made about the s.ze of

STM. and so are not affected by treating STM s.ze as a free parameter.

SUMMAI^

The pr.ncpal result of repkat.ng th.s expenment .s that the shared worKspace

effect pred.ctS much more of the deta.l of the subjects' memory capaoty vanat.on than

the chunK.ng hypothesis alone.

 —--^ .^~. ^-.

wrrr

DELIBERATE COOING AND SHORT TERM MEMORY

CHAPTER 4-'

The subji ct of deliberate coding h« a central place among the phenomena

associated with STM, especially since it received a prominent role in M'ller's famous

1956 paper.[M56] Neisser [N66] says, in explaining chunking,

"Of*en the 'chunks' which the subject stores and recalls are not those which
were presented, perceived or originally stored. For this reason, we must
assume that there is a verbal memory which is not simply echoic. The most
elegant demonstration of this Kind of receding - and at the same time the
clearest indication of the need for some such concept as the "chunk" - is S.
L Smith's experiment, reported m Miller's ... paper. Smith tested his own
memory span for "binary digits," i.e., strings of zeroes and ones .uch as
0110010111010001. Having established his span (about 12), he
deliberately memorized various methods of reaomg binary digits into other
number systems. When he had learned "octal" numbering (001 - 1, etc. ..),
his memory span for binary digits rose to nearly 36! In effect he was
translating every triad of zeroes and ones into a single octal digit and then
storing 12 of those. Simil?' results have been obtained by Pollack and
Johnson(1965)."

In view of the conceptual prominence of coding it is necessary for our theory (or

any other) of chunking to represent the relevance of deliberate coding experiments.

Coding experiments differ from most STM experiments in that fact that there is a

deliberate voluntary re-representation which can be engaged in or avoided by the

subject, and also by the small vocabulary and periodic structure of the codes studied

and the use of the same vocabulary in more than one code. In the literature since 1956,

deliberate coding has been invoked far more often than it has been studied.«

♦ Induced chunking has been more frequently studied. [BW69],[M70]. Nevertheless it is
worthwhile to reexamine some of this literature in order to see how a knowledge of
coding might contribute to a theory of chunking.

■ HBMBMkJMMMMMM

W' .'S' me Ol>ii ii i mn 11«—ww

4- 2

SMITH'S BINARY DIGIT EXPERIMENT

We cannot review the published report of Smith's experiment because the report is

unpublished.« The closest representation of it seems to be Miller's description. The

only point in studying it here is that it is an influential piece which is a source of date

which we would hope to compare to a model of coding processes.

All of the quantitative results are given in Miller's Figure 9, (Figure 4.1 below,) which

relates 'memory span for binary digits" to "receding ratio" by means of two curves,

marked "observed" a^d "predicted from span for octal digits."* There are inconsistencies

between the graph and the text which indicate that the figure is erroneous, at least for

the "predicted" curve. The text indicates that Smith could recall 12 octal digits; the

number assumed for 1:1 recoding ratio was 15 rather than 12, maKing the predicted and

observed curves agree. The caption speaks of bases 2,4,8 and 10 whereas the graph

« During an attempt to locate a report corresponding to Pollack and Johnson's reference
(which turns out to be erroneous). Dr. Smith told us that the report was not published,

and that he had no copy.

• The original title is: "The span of immediate memory for binary d.g.ts is PjJJ* " «
function Sf the recoding procedure m* the predicted ^^^Jt^
multiplying the span for octals by 2. 3. and 3.3 for recoding mto base 4, base 8. and
base 10, respectively." Thus the title and figure do not correspond.

—-■■■ --- . .. r. ..■.■...._,„^ • — — -"■ - - . - - - . - - .. - -^

4-3

50

Predicted from Span for Octal Digits

40

Merr.ory
Span
for
Binary
Digits

30-

20 Observed

10 -

One Highly Practiced Subject

i

1:1
i

2:1
t

3-.1
—r-
4:1 5:1

Recodmg Ratio

Figure 4.1 - Miller's Graph of Smith's Memory Span Data»

. - . - - - - - -. —

r^ ^"

4-4

and remaining t»xt deal with five receding ratio».

It it hard lo imagine the basia for the "predicted" curve, particularly for its

departure from linearity. Several simple hypotheses which we have tried fail to fit the

curve.

There are no obvious troubles with the "observed" curve. It would have been

helpful to Know what the criteria for judging "Memory Spin for Binary Digits" were.

Another serious deficiency in the available description is that we are not told whet

the stimulus modality or the reporting modality were. This makes it difficult to judge its

relationship to other experiments, especially attempted replications.

POLLACK AND JOHNSON'S CODING EXPERIMENTS

Pollack and Johnson [PJ65] describe their experiment as follows:

"In 1952, Smith demonstrated that the memory-span for binary digits
may be substantially increased following instructions about efficient coding
procedures. The present study is a direct extension of Smith's study...

METHOD AND PROCEDURE

Subjects. A group of 6 university students was tested 1.5 hr. • day
on 28 successive testing days with both verbal and tachistoscopic materials.
They were then taught the decimal equivalent of the 4-digit binary code for
12 days, and, finally, were retested for 10 additional days.

Memory-span materials. Verbal messages, consisting of randomly
selected scramblings of 'ones' and 'zeroes,' were recorded. The 'zero' v/as
read as 'oh.' Half of the messages were read without interruption; haU of
the messages, called "split messages," were read with a unit-pause after
•very four digits. The rate of reeding was so adjusted that the average

AMaMM*^^Mi*«MM

A-5

r.te of presentation was constant at 1.4 binary digits per sec. S s task was
to reproduce the message upon termination. The termma ,on was md cated
by Ttonal signal. The answer sheet was subdivided mto groups of four
units. The length and 'split' of the message was announced before each
presentation. Ten to 15 different messages of each message-length were

recorded to reduce learning of specific messages.

Tachiftoscopic materials. The tachistoscopic messages were 8 circles
arranged in a horizontal line, exposed for 0.04 sec subterdmg a v.su.
Inale of 11 digrees at a seating distance of 16 ft. Eacr c.rcle was e.ther
mi or un lllef. A pool of over 100 displays *as scrambled on successive
d ys in half of the slides, a dividing line split the display mto two groups
o? four unit. each. Twenty-four 'split' and 24 unbroken d.splays were

presented each testing day.

Coding instruction. Instruction about coding «« ■mil»«*!« jjf
expiring the principle of binary numerals, the followmg code was

employed: 0000 to 0; 0001 to 1; -, and 1111 to 15.

The experiment measured two statistics of performance: error rate and memory

span. For the tachistoscopic materials, there was no span increase after learning

coding.

We need not attribute this failure to the stimulus modality. The tachistoscopic task

was et leaat a double-encoding task, representing the stimulus successively as "filled

circles" or "unfilled circles." as corresponding "ones" and "ohs," and then by decimal

numbers such as 3 and 12. The difficulty for the subjects may well have arisen from

the complexity of controlling such a task.

For both kind, of materials, there was a trend to decreased error rates over the

duration of the experiment, with the effect of practise and the effect of learning coding

confounded. The question of whether learning coding affects the final, stable error ret.

(if there i. .uch) i. open becau.. of the failure of the control half of the experiment.

... .-... —^-J- —,—^-_
- ■ - ■ —-*— ^üMMMMMHAMMMMI

^■ppp

4-6

"The initial experimental design called for two groups: an experimental
group and a control group. ... the control «roup ...defeated their purpose

by learning the code clandestinely."

The nstura! point of comparison of this work to Smith's work is in the memory span

statistics. Pollack and Johnson's results contrast with Smith's in that the fractional

increases in memory span are relatively small; the average span before coding was 11 ,

the average after coding was 17.3, so that the span ratio increased by about 567.* (The

corresponding increase indicated by Smith is 1137..)

Even this modest increase is somewhat of an exaggeration because of the optimistic

scoring method used. Credit was given for a presumed rate of partial correctness in

incorrectly reported decimal digits.

SCORING. An error in decimal notation was treated as equivalent to a
response of four binary digits. Such an error will be termed a "jedionai
error." Reconversion to binary errors yields 2.13 binary err.- i par error in
decimal notation on the assumption that all errors in decimal vere
equally-likely. Thi« -tethod was conservative; sample comparisonr. between
errors in decirr the original binary messages yielded 1.9-2.0 binary

errors per errc imai notation."

Thus for example, if a subject, when reporting 8 decimal numbers representing a

sequence of 32 binary numbers, got all 8 incorrect, he would be credited with a span of

14.96 digits for that trial, thus exceeding the group's best uncoded performance of

about 13 digits. The experimenters have failed to discount properly for guessing. The

scoring method made coding improvement for the longer sequences absolutely inevitable

because scores as low as the performance without coding were unachievable in

principle. The unavoidable minimum turns out to be the major component of the

subjects' "substantial Rains."

« From Figure 3 in [PJ65].

-——■ — ■ - - - ^^_^^^_^^_^ ■ - - - ■ ■ - -- -

 ^.^. ^

A-7

Furthermore, the advantages of coding in span were confounded with practice

effects.

"Because of the large initial changes m performance, only the messages
presented during the last seven days prior to coding are considered."

The stability of the reference pre-coding performance was thus tot established. The

coding advantage includes unknown amounts of continuation of improvement with

practise on this class of tasks.

The most serious criticism of the experiment is that the task was changed at the

point of learning coding. Subjects now responded m decimal notation, so that the

portion of the task involved in serially producing the binary sequence was no longer

required. Since the decoding step is eliminated, we would expect the task to be easier

than Smith's to some unKnown degree. This task is not Smith's task, and Pollack and

Johnson's experiment in no way constitutes a replication of Smith's experiment or

confirmation of his results.

In view M the optimistic treatment of the task definition and scoring methods, the

weakness of the effect on memory span and the several uncontrolled factors which

might account for this effect, it seems reasonable to consider this experiment a

non-confirmation of S i.n's result to the extent that quantitative comparison is possible.

Possibly the contrast is understandable in terms of individual differences between

subjects. Pollack and Johnson note that

"The better S's were often able to receive the split 40-unit messages

without error."

which is performance far above the cited averages for the 6 subjects.

-

I .lin PMV^^MWmWOT* ^■U^-|JilJI JIW ■HIM ■

•

4-8

OVERVIEW

The work on deliberate codmg is surprisingly sketchy in view of the^ place that it

holds in current views of STM. Coding phenomena ^ ve not been systematically or

thoroughly explored, nor have the widely accepted phenomena been well verified

experimentally. The best established phenomenon is the fact (but not the amount) of

increased digit span when a code is being employed.

Some of the relatively unexplained phenomena include:

1. The capacity to use codes in non-overlappmg ways. (Digits
includea m one chunk are somehow prevented from being included in

others.)
2. The capacity to restrict the encoding to be periodic. (Persons
who can group by 2's or by 3*5 can select to do just one of these,
even though thay are trained tor both.)
3. The capacity to use different codes, and to change codes. (The
digit "one" is a subumt m several difierent codes.)
4. The tendency to report a stimulus only once.
5. The capacity to perform corroct encoding and decoding after being
instructed in the task. (The instructions are assimilated into chunking

methods.)
6. Improvement Of coding performance with experience.

Coding experiments orovide a particularly good opportunity to observe overlap,

periodicity and code selection effects, in contrast to the interference experiment above ,

where stimulus elements were not reused, words in the stimulus lists did not form

mm

- -

r„ ^ ! ■ l—1 " ' « ' ' "• 9«<^m*wiii-iii^ii'iiMMi |I.IIP>>M»W-••HJ.UMI ■ HPMiiMi. i ■!< iiwii-ii «IIJII] iwp vmjimiH i ■ mp^w^ntw

4- 9

periodic groups, and all the words were meaningful only in a single code (English).

The phenomena of mstructability of subjects and single reporting are taKen for

gra.tted, but they are given no theoretical status. The subject's receipt of instructions

is ordinarily treated as part of the experiment, but somehow not a part that must be

accounted for. The resulting accounts are necessarily partial at best. Because the

subjects' performance depends intimately on what he is instructed to do, it is limited by

his capacities for interpretation and conversion to action. If the instructions and their

interpretation are not given theoretical status, we have no way of rep-esenting what

features of his performance reflect such limitations.

GOALS FOR INVESTIGATION OF CODING

We desire a model of human coding processes which ts sufficient to account for

occurrence of certain hinds of performance observed in the experiments above. Since

our model is to be organized and verified by means of a computer program, we want the

program to exhibit at least the following:

1. It receives and repeats in order sequences of symbols.
2. Given a code, it encodes and decodes sequences using the code.
3. It has a stable symbol span for any particular experimental
arrangement.
4. The span is responsive to the presence and structure of the code
in a way which is compatible with the dati on Smitn's performance.
5. The instructions to the subject are explicitly represented.

- -■ - ■ ■ -■— ^ — . ^- ■-.-r niUBan» ,*. .I,., ■ ■ ^—.-.-L—.^^——-MJ-^^-.-^- .^ - - . — ~ - . - — -.■..- I, ■■ in T» irti

■ mm

4- 10

Having «hieved • model which s sufficient in this sense, we can go on to learn how

the realism of the model's performance vanes with variations in its content, namely the

forms of chunks and chunk manipulation processes.

BASIC CODING PERFORMANCE OF THE SLATE SYSTEM

The principal difference between the 'ree recall instructions given for the previous

chapter's task «rd the instructions for cod-ng tasks such as Smith's is that order of

reporting is specified in the coding task. Because of this order requirement, the

operator RECALL WORDS which was used to perform the interference task is not

adequate for cbdmg tasks.

Th» Slate system has another operator, called REPEAT SEQUENCE which acts

similarly but gives an cdered report after termination of the sequence. Since the

sequence may be mcomple^, it reports by first finding the beginning of the sequence (if

it is pre&ant) in STM and report,,-* successive symbols. If this succession does not

terminate at the end of the sequence, it »hen locates the end and reports (in forward

order) the successive symbols of the 'ragment of the sequence found at the end. Any

other remaining symbols in STM must be m isolated middle fragments of the sequence.

They are not reported. It inserts "-UH-" into the sequence presented to the user under

4 conditions:

1. It cannot find the sequence beginning.
2. It cannot find the next sy.nbol at a non-final point in the sequence.
3. It cannot find the symbol for a token which is part of the sequence Of tokens

having symbols.
4. It canno' find the sequence end.

-■■■--■ - -

-'—^- ■—■

4- 11

OVERLAPPING ENCODINGS:

Binary digit streams can be encoded into any particular higher base code in more

than one way, with differing results. For example, 101001110 can be encoded

conventionally as 516 in octal code, or in another way as 5241376, using the same code

but recognizing every adjacent triple of binary digits. A covert rule of the conventional

Kind of encoding requires that the spans of the encoded symbols be disjoint, so that 516

is correct and 5241376 is not. Somehow the subject avoids using the code in the

inappropriate ways. His restriction of the encoding act to just those places where it is

appropriate is one of the encoding phenomena to be accounted for. The possibility of

overlap raises several questions:

1. Can subparts be shared among chunks?

2. If so, how is inappropriate sharing avoided?

3. Can chunking apply to the outcomes of chunking?

An inadequate explanation would be to say that chunk domains may not overlap, th.t

they must simply partition the field of available information.

This is an improper assumption for some problems, such as the problem of

describing a chess position, where one piece may be involved in more than one

significant structure, and therefore should be included in more than one chunk. It also

makes it difficult to model hierarchies of chunks in STM, where the entities in some

chunks are not input entities (e.g. the phrase entities of the noisy speech task.)

- -

wrsi mmm
WKBtKKmmm

—■ ""
1,1 ' m

a-12

When a particular digit is made part of an encoded group in the Slate, an assertion is

made to the effect that:

<THE DIGIT> is part of <THE GROUf».

Any later assertion that:

<THE DIGIT> is part of <S0ME OTHER GROUP>

is rejected as inconsistent. The selective use of assertions which can combine in

consistent or inconsistent ways provides a basis for establishing hierarchic relationships

where that is appropriate and yet reiecting overlapping codes and other inappropriate

combinations.

The criteria for accepting a matched chunk as relevant in the Slate system do not

require that a complete match of chmk to Slate content be achieved. As soon as an

adequate partial match is achieved, the relevance of a chunk can be established. As a

direct consequence, the system is able to anticipate the remainder of a partially

presented chunk; for our experiments anticipation may occur after two letters of a word

or two digits of a coda chunk are present. Anticipation does not occur on the

quaternary (base 4) coding task, since the quaternary code is a two-digit code. The

general effects of anticipation are discussed elsewhere below, and its effect on octal

coding performance is shown in the figures below. However, it should be noted that we

can explain Smith's performance in detail only on the assumption that anticipation does

not occur in the model.

ii nmrt ii i - - -

mjm~~mmwi^^mm^-

A- 13

SHARED WORKSPACE EFFECTS ON CODING

The efficiency of encoding of short term memory contents depends on the structure

ot the code and the discipline used to insert elements into the memory. We would like

to Know how code structure relates to memory capacity.

Consider the simplest codes m which any sequence of N input elements can be

encoded into one grouped element. Let memory capacity be fixed at C elements. Lot

the insertion process he such that the coded group is recognized and then stored in

STM. This simple scheme would till memory with C encoded groups of N input element«

each, giving C»N total capacity. The relationship between the length of the longest

bv^ocice that the subject could hold and the length of each code element would

therefore be linear.

We contrast this with the Slate model in which uncoded and coded digits both appear

m STM. The encoding process acts as follows:

1. Sequence elements are received serially.
2. Each sequence element is placed ir, an empty memory space.
3. Whenever N sequence elements are present in memory, an
encoding operation removes them and inserts one corresponding
element representing the group.

Unaer these assumptions, encoding may proceed without loss until there is no empty

memory space for the next sequence element. This condition defines the maximum

encoded ci Kity of the memory for that code.

A simple geometric aralogy makes it easy tc visualize the limiting process. Consider

the problem ot filling a box C units deep with blocks through a hole in the top. Each

. . i - ■ ■ - ■

4- 14

block must be placed directly under the hole. Any vertical stack of N blocks may be

turned on it* side to be one block high. For C-6 and N-3, Figure 4.2 shows the box at

the point of fullness. Four groups of 3 blocks and two additional blocks are in the box.

Figure 4.2 - Box-of-Blocks Analogy to STM Capacity

No more blocks can be added, and there is no group of 3 which can be laid down. In

general, N»(01-N) blocks are in groups and C-l blocks are ungrouoed at the point of

fullness.

Table 4.1 shows the capacity at fullness for various sizes of memory and code

length«.

— ■■ — ■■- -- --- - -

< ««■Piuil ■«'■'>-*" -< ,,.. ..-,..™-... „«,.. . .^ *„,. .- . .,. ,,,'.«..,..... . ,,m ,^mm,^mmmmwrmmWm^m^mim^

4- 15

MAXIMUM MEMORY CAPACITY FOR A SIMPLE CODED SEQUENCE

LENGTH OF A CODE GROUP

2 3 4 5 6 7 8

4 7 8* 7

5 9 lit lit 9
6 11 14 15» 14 11
7 13 17 19» 19» 17 .3
8 15 20 23 24» 23 20 15
9 17 23 27 29» 29» 27 23
10 19 26 31 34 35» 34 31
11 21 29 35 39 41» 41» 39
12 23 32 39 44 47 48» 47
13 25 35 43 49 53 55» 55»
14 27 38 47 54 59 62 63»

Table 4.1- Memory Capacity with Simple Code

The best codes for each capacity are marked. Note that the optimal group length is

always about one half of C.

It is interesting »hat large changes in memory capacity produce relatively large

changes in maximum encoded sequence length but o-ily small changes in optimal code

length. Small reductions in code length frort the optimum carry only small

disadvantages in achievable sequence length. We can also see that the simple linear

formula CaN is generally a poor estimator of maximum sequence length. This formula

would apply if every element of rrsmory capacity could hold an encoded chunk.

We might consider a more complex code, in which two levels of encoding occur

rather than one, so that grouping N groups of N elements into one element is also

allowed. Table 4.2 shows the capacities achievable for several codes and memory sizes.

Note that again the optimal code length is a slowly increasing function of memory size.

 -

4- 16

MAXIMUM MEMORY CAPACITY FOR A SIMPLE COOED SEQUENCE

LENGTH OF A CODE GROUP
2 3 4 5 6 7 8

3 7 5
4 11 8 7
5 15 17 11 9
6 19 26 15 14 11
7 23 35 31 19 17 13
8 27 44 47 24 23 20 15
9 31 53 63 49 29 27 23 17
10 35 62 79 74 35 34 31 26
11 39 71 95 99 71 41 39 35
12 43 80 111 124 107 48 47 44
13 47 89 127 149 143 97 55 53

Table 4.2- Memory Capacitivs iising a Two Level Cod«.

The Slate system could use either of these codes by having the appropriate code

chunks. The ones which ware given cause it to use the single level code, so that its

peak performances correspond to Tnble 4.1.

SLATE SYSTEM PERFORMANCE

The Slate system performance an binary encoding/decoding tasks turrs out to be

very simple and strongly patterned despite the complexity of the mechanism which

performs the chunking. Little of the diversity of the system is seen on this task.

We will examine four variations of the task:

1. Performance without coding knowledge
2. Quaternary coding
3. Octal coding without anticipation
4. Octal coding without restrictions.

- - - --— - — - — •—' "—■— J

mm—^^*m-^

A- 17

In all viriations, fo aach elementary experimental sequence, the system input

consists of a command to repeat a sequence, followed by a random sequence of ones

and zeroes, followed by QUIT, a sequence terminating symbol. On QUIT, the system

recovers what it can of the sequence from the Slate and presents it. As described

elsewhere, there are two ways m which dig.ts can be lost between input and output.

The chunKs representing a dig.t can be deleted from the Slate m order to make room for

some incoming chunk; an isolated middle subsequence of digits may not be locatable from

either end of the sequence. There are no mechanisms for guessing. For the case in

which the system has no code knowledge. Figure 4.3 shows representative relationships

of the average number of digits m the output sequence to the number in the input

sequence.

The form of the relationship m Figure 4.3 arises as follows: For any number of digits

up to the chunk capacity, no digits are lost and sequence repetition is perfect.

Thereafter performance .s limited to tie chunk capacity. Losses mcrease with sequence

length because of the increased n.cedence of isolated middle fragments.

For the case o» quaternary coding, the system does not anticipate because the

length of a code segment (2 digits) provides the minimum number of symbols required

for accepting • chunk. Therefore, up to the point at which the Slate is full, the

sequence is encoded perfectly and repetition of a number of digits up to twice th»

chunk capacity of the Slate can be achieved. Beyond this, the two mechanisms

described previously cause declining numbers of output digits with increasing sequence

length, is shown in Figure 4.4.

- - - - - - —

■I M^^w^^^^——-^^^^w ^^^^w^

4- 18

Retained
Digits

15 lo
Sequence Length

Figure 4.3 - Uncoded Digit Retention Performance

----- --- MM^M*. —. ■ -

Retained
Digits

25

20

J5

10

4- 19

/\/
t •

30 35 40

Sequence Length

—T —

45

—»

50

Figure 4.4 - Effect of Quaternary Coding on Digit Retention

For the third case, chunks for the binary triples cf octal code are in bulK memory,

and anticipation has been prevented. The results, in Figure 4.5, are similar to thosu tor

quaternary coding, with perfect retention of a number of digits up to three times the

chunk capacity of the Slate. The analogous result will hold for larger spans as well.

Performance in octal coding is mora complicated in the unrestricted case, where

anticipation occurs as described above. Some binary digits do not get encoded at all, so

the number of digits which can ba retained is shorter. Figure 4.6 shows the effect.

■ ^MiM*BM ■MM MMMMOMaMa

TT iiiiwriT.i..^^rr "P

4- 20

Retained
Digits

30 35 40

Sequence Length

Figure 4.5 - Effect of Octal Coding on Digit Retention

i IMi ■!■■■ IIBI I iiiiaiiw--' ■■ ^ Mm
MHHMH mmtimmm

4-21

EVALUATION

We evaluate the coding performance of the Slate system in two ways, for its

effectiveness in coding and for its similarity to human performance.

The system is successful in all of the basic operations of the coding task. It

receives digits, encodes using the appropriate chunKs, and repeats the sequences given.

It exhibits memory capacity limits and stable memory spans. It performs coding without

overlap because the code chunk structure prohibits overlap. In other words, the system

provides e sufficient explanation for performance of acts of sequence repetition on

coding tasks.

We have not represented the aspects of the task involving initial acquisition of the

task from given instructions and implement of performance with practise. The ability

to hold several codes while using one is also not represented, although there are

straightforward ways to do so in the Slate framework.

We can compare Smith's performance with tn.t of the Slate system using the shared

workspace concept. Figure 4.7 shows Smith's curve along with the full workspace curve

for 12 chunks. The fit is extremely good. We ran appreciate how good it is by

comparmit toe data with the predictions of other related hypotheses. In Figure 4.8 the

straight line represents the simple linear model introduced above, assuming that there

may be 12 fully encoded chunks in STM. The other curves are the shared workspece

turves for 10 and 14 chunks. Each of these three alternatives departs seriously from

the data. While the shapes of the latter two are appropriate for these other State

sizes, the fit to the data is tight only at 12 chun The curve of Figure 4.7 fully

 ^—'—^—~»MI»^».

4-22

25 1

Retained
Digits

10 -

Sequence Length

Figure 4.6 - Effect of Octal Coding with Anticipation

accounts for the description of Smith's experiment. It is important to note that it was

necessary to use the fn«-*d workspace assumption and the assumption of no

anticipation to achieve the fit. These are the assumptions used to achieve the fit to

Bower's interference r'ata as well.

The data of Pollack and Johnson resemble the Slate system as it performs octal

coding with anticipation. Although our improvement in span of 557. corresponds to their

improvement of 562, for the reasons discussed above this seems to be mostly

coincidence.

A

— - - ■ ■ I I ■■! - -

4-23

50

40

30
Maximum Retained

Sequence Length

20

10

*12

\ Smith's Performance

^ Slate System Performance

-r-

2

-T"

3 4

—»

5

Figure 4.7 - Fit of Smith's Data by a Shared Workspace Model

- - — ■

4-24

601

50

40

30-

Maximum Retained

Sequence Length

20

10

Full Packing

OiNer Slate Sizes

o it

Smith's Performance

- 10

I 2 3 4

Code Element Length - Bits

Figure 4.8 - Failure of Alternative Models to Account for Smith's Data

■ - -- -■- - »M^M^^M^^M^M

4-25

There may be a deeper basis for the qualitative correspondence which is present.

The performance of relatively untrained or unmotivated subjects probably arises in

large part from their normal linguistic skills, in particular from abilities to decode

sequences with internal redundancy. It is the presence of redundancy that gives a

significant saving of effort to the person who can accurately anticipate what is coming.

The anticipation features of the Slate system were developed to deal effectively with

letter strings representing unseparated words, where the same kind of redundancy

prevails. A salient feature of the coding task is that such redundancy is absent. An

inexperienced coding subject may be disturbing his own capacity to encode by

anticipating rather that waiting for complete code groups to be presented.

This kind of analysis supports the interpretation of Pollack and Johnson's results as

representing conditions with major individual differences, unstable performance and in

particular unstable control of the moment of encoding.

The commonly used assumption that anything in STM can be brought out

appropriately is questionable. The Slate system could not do so because order

information was being lost by interference.

The 12 chunks available to Smith for his highly practised performance may be more

typical than the 7 plus or minus 2 often assumed. The difference may well be ■ general

inability to use all of the memory resource because of veakness of the methods used to

perform the task. It will be necessary to pay close attention to subjects' methods of

task performance in order to analyze their actions well enough to find out.

 i i _ —

4- 26

SUMMARY

The simple view that STM is a repository for things that have been grouped does

not explain the observed relationship between capacity to repeat digit sequences and

the codes used by Smith. In contrast, the Slate system models this relationship well.

The assumption that STM is a workspace shared by coded and uncoded digits is

instrumental in explaining the relationship.

: — ^"- 'immm n i i ... lit ■ niii im ii i . - ■ " '■ ~ "—^

CHUNKING AND AUDIO PERCEPTION

CHAPTER 5-1

In 1963 Miller ar d Isard published the results of an experiment in speech perception,

relating the ability to hear (and repeat) word sequences presented with audio noise to

the structure of those word sequences. [MI63] They used three different meth-ds for

preparing sequences, each resulting in a different Aind of underlying structure. Samples

of the three are:

Complete sentence: The sticky humid weather frayed tempers.

Syntactic sentence: The sticky young rhythm ate wonders.

Disordered sequence: Tempers young rhythm ate secret the.

Their basic result was that sequences which were complete sentences were heard

significantly better than syntactic sentences, which in turn were heard significantly

better than disordered sequences.

Miller and Isard describe their expenment as follows:

"...the output of a noise generator was mixed with the speech signal before
it was amplified and led to the S's earphones. The spectrum of the noisj
was tailored to match the long-ierm spectrum of speech; this spectrum
provides a very effective masking signal. F've different noise intensities
were used, ranging from ♦15 to -5 ab relative to the level of the speech.

... Two groups were run, totalling six S's altogether."

The principal results are shown in Figure 5.1, from the paper.

"Sentence intelligibility scores are shown graphically in Fig. 1, where the
per cent of the sentences repeated exactly is plotted as a function of the
speech-to-noise ratio for each type if sentence. The results from ...
unmasked speech are also plotted in Fig. 1."

 - - ■ i -1 miwiaiiiaii' M\ ■■!

IOC 1

5- 2

Mixed Presentation

I
r

s
i

Speech-to-noise Ratio in Decibels

Figure 5.1 - Per cent strings heard correctly as a function

of speech-to-noise ratio when the three types of test

strings are presented in mixed order.

Miller and Isard conclude:

"The general conclusion that these experiments appear to support is
that linguistic rules of a non-phonological sort do indeed have measurable
effects on our ability to hear and repeat sentences. Moreover, both
syntactic and semantic rules are effective, since grammatically acceptable
but semantically anomalous sentences are intermediate in difficulty, falling
below t!ie normal sentences but above the ungrammatical strings in terms of
the measures of perceptual accuracy that we have employed. A complete
psycholinguistic description of speech perception therefore, must take into
account the syntactic and semantic rules of the language - and perhaps a
number of non-linguistic pragmatic rules as well.%

- - ■ -

5- 3

GOALS FOR THIS EXPERIMENT

This experiment is much more complex than the previous two, witn interactions

between noise, grammar, words, meao.ng and memory capacity dominating the results.

Each of these is known to have its own non-trivial complexities. We are primarily

interested in how such interactions could be modeled at all. What sort of a model will

allow words, grammar, noise, memory capacity and semantic effects to be represented

together and to interact meaningfully? Other expli.it models of STM (discussed in

Chapter 6) do not represent the interactions needed to approach Miller and Isard's

experiment, primarily because the representations for the content of STM exclude or

make inaccessible some neces' ry information.

Our goals are f srefore qualitative ones, examining feasibility rather than accuracy.

Because of the difficulty of comparing the Slate's representatior. of noise with audio

noise, we cannot form precise criteria of quantitative correspondence of error rates.

However it is possible to rank relative word loss rates for the three kinds of strings.

The principal results which we derive in detail below are:

1. The Slate system is able to perform word segmentation and
grammatical analysis '- »he presence of noise.

2. The system performance responds correctly to the presence and
absence of noise end the presence and absence of grammatical

♦ Miller and laard also dealt with subp-.is' set, which is outside the scope of our

experiment.

MUäMMHWMM ^ ■ - ■■ ■ -- ■—'■"-'■ ■ ^'^ -

5- 4

structure in the given information.

3. Grammatical analysis can be treated (at least in part) as a chunking

activi*/.

4. The system f*its to model the observed rela* onship between
meamngf jiness of a sentence and noise.

In order to apply the Slate system to Miller and Isard's task usefully, we need a way

of representing the stimuli and criteria for judging the correspondence between the

Slate system action and thei' results. The critoria are chosen to establish that the

performances are in fact comparable and to show how the particular methods used by

the Slate system lead to results that agree with or differ from Miller and Isard's results.

The simplest criteria concern the capacity of the Slate system to perform the task at

i. Ab.lity to identify words in an input stream
2. Ability to identify phrases in an input stream
3. Ability to respond differentially to grammatical and ungrammatical

stimuli.
4. Ability to respond differentially to semantically coherent and

incoherent input.
5. Ability to function in the presence of noise.

In addition to these, the following properties would indicate correspondence of

performance:

1. Performance under low noise is nearly perfect.
2. Syntactically structured strings are more likely to be repeated
correctly than r on-structured strings.
3. Semantical! coherent strings are more likely to be repeated
correctly than »., i.ngs with onl" syntactic structure.
4. Increased noise leads to decreased likelihood of correct repetition

under all conditions.
5. Losses are expressible in terms of words right and wrong.

 - ■ __. ■■-■-''■ —'—;—— ■MMaua^

5- 5

CHUNKING AND SYNTAX

The notions of chunking and parsing have generally received separate treatment in

the psychological literature. There are several historical reasons for the separation.

Chunking has a short technical history in which it has jppeared most often in simple

phenomena of recurring events. Parsing has a long technical history and now appears

as a family of complex theories of forms, including transformational grammars and

various semantic systems. Linguists commonly exclude claims that there is any

correspondence between steps in their grammatical processes and psychological events.

•

Effective hearing of language certainly involves psychological events, and these

events make the linguistic distinctions possible simply because they lead to verbal

behavior. Understanding a spoken sentence involves relating it to learned constructs,

as does the chunking that invades so many psychological experiments. It is of

psychological interest, therefore, to discover what part of the processes of linguistic

understanding can be accounted for by the same processes used to account for

chunking. The account below is a modest step in that direction.

* Chomsky's remark below is representative:
"To avoid what has been a continuing misunderstanding, it is perhaps worth
while to reiterate that a generative grammar is not a model for a speaker or
a hearer. It attempts to characterize in *he most neutral possible terms the
knowledge of the language that provides the basis for actual usage by a
speaker-hearer." [C65]

fiJfciüMtir-" ■-■»—■ - ■-"- ■" J -»M^^M UMBfaHMMUhHiflHiMaaiM

PARSING WITHOUT NOISE

The task given to the Slate system to Investigate parsing without noise is to identify

words and phrases in sequences of unseparated letters, e.g.

BIGTREEANDLITTLEDCG

Part of the problem for the subject is to segment the given input stream into units.

Elimination of spaces makes the segmentation problem non-trivial for the Slate system.*

Two Kinds of chunks are provided, word chunks and chunks representing syntactic rules.

Examples of word chunks, and all of the syntactic chunks are given in appendix CHUNK

CATALOG. The composite stimulus problem may appear at several levels of hierarchy,

and each instance may require evidence from several levels of hierarchy for its

resolution. Although we deal with only two levels (word and phrase) in this experiment,

the system is not committed to particular levels or numbers of levels. The techniques

may be applied at other levels as well. Fc example, voice formant recognition and

phoneme recognition might be performed. It should bd noted that the grammar used

here is not n linguistically serious grammar; similarly the word chunks might better be

replaced by "morpheme chunks," the letters by "phoneme chunks," and so forth as one's

theory requires.« Letters are presented serially exactly as binary digits are presented in

the coding experiments already described. The result is taken to be the sequence as

•sated by the system.

a The segmentation problem is a special case of the need to represent theoretically how
it happens that adjacent parts are not regarded as shared in the result. This input is i
non-overlapping composite stimulus.

a The grammar is a minor extension of one originally used to represent the noun-phrase
grammar of the book Go, Dog, Go, a first reader for children. [E61]

-■■ ■ - ■ ■ -■ " — ^■>-—-.^—^-^-..■^^-J..-- .,., , - . . -■■ - — -^- - ■■.■■.:.■.... ■■■ — — - ■- -^.~.-..~--..-- ._■.-■...- ■ ■.^■.._ .. - -■.■■>_.,.■,_ jk..,^Ue^la.tjM^M^MM^.JMfcJ

5-7

Figur« 5.2 is a schematic reprasantation of th* derivation of the Slate content at the

end of a sequence.

The interpretation of the notation is as follows: Each of the boxes in the bottom row

Given:

(I) B1GTREEANDDOG

Derivation:

NCN
■■ ■

NP
..

BIG TREE AND DOG !

B I G T R E L A N D _D 0 P

Figure 5.2 - Slate Slate Derivation Diagram

represent« a chunK formed by receiving input information. Each box above the bottom

row contains the (bulk memory) name of a chunk which was matched to the Slate content

and included the chunks named immedisteiy below it. Since there is one box in the top

row, therft 1$ one chunk in the Slate which includes the entire sequence. Some of the

«ubordinate chunk« also retain their identity in the Slate, and others have been lost.

*** - — j---- •-'" ■--■■ -—^-: M ■ —

5-8

(This particular sequence car. be completely chunked as shown maintaining only 3

independent chunks in the Slate.)

We tee that the action of the Slate system is entirely successful in interpreting the

given sequence in terms of the available chu .ks.

Figure 5.3 shows several other successfully interpreted sequences.

We see from items (5) and (7) that repeated use of a chunk is successful. In item (5) we

see that recursive use of a chunk is successful, since this example includes an outer

NOUN oroduced by the NP chunk and which includes an inner NOUN produced by the NP

chunk as a subpart. Item (4) includes a use of the ARTN chunk, which has a letter and a

word as subparts.

Figure 5.4 shows several sequences for which the available supply of independent

chunk memory spaces was fully depleted during processing. For comparability the

sequences are selected from the ones above, but the number of available chunk spaces

has been reduced from 5 to 4.

Note that although the input is received letter by letter, losses tend to be in terms of

whole words and completed phrases. This is a general property which is a direct

consequence of the way the system chunks. Units lost are the independent aggregates

which are resident in the Slate at the moment of interference.

-■—L -■»—- Mk ■ ■■■-■■•-■ ■-- - ■ ■
 —- . ■ i

I I" I ■ llll ■ ■""■ "1 " "" ■- • "

Give":

(2) PARTYONBEAR

Derivation:

5-9

FN

PP

PARTY ON 1 BEAR

P A R T Y ON ,£ A R

Given:

0) THEBLUEDOGATETREE

Derivation:

NVN

AN

NP

THE BLUE pOG ATE FREE

T H E B L U E D 0 G A T E r R E E

Given:

M> ONATRtE

Derivation:

PP

ARTN

ON TREE

l£j N f\ T R E E

Figure 5.3 - Other Successful Derivations

Part 1

 ^ .. M i i - ■ — ■

5- 10

Given:

(5) BIGBLACKDOG

Derivation:

1 NP

NP

BIG
i

BLACK DOG

B L G B L A £J KIO 0 G

Given:

^ BLACKANDWH1TEDOG

Derivation:

NP 1
ACA

BLACK AND WHITE DOG

B L A C K A N D W H I T E
—1_

D 0 G

Given:

(7> TREEANDTREE

Derivation:

NCN i

TREE AND TREE

T R E E A N D l|p E E

Figure 5.3 - Other Successful Derivations

Part 2

in ■■i—i-iir-—'■ ■ -■ -■■ ---■■
- ■ — - ' • '■--*--—■■---■ ■■■■

■W"""^

Given:

PARTYONBEAR

Final state:

5- 11

PR

ON BE AR

0 N B E A R

Given:

THEBLUEDOGATETREE

Final state:

NVN

AN

THE /\ DOG ATE TREE

T H E - - D 0 G < \ r E An E E

Given:

UNATRE

Final sti

E

ite:

ARTN

TF !EE

A T|R E : E

Given:

B1GBLA

Final st

CKDOG

ate:

NP

BLACK DOG

B|L A C K|D 0 G

Figure 5.4 - Performance Degradation by Exhaustion of Memory

"--■■ - - ■ ■ ■ _^ ■

wm—

5- 12

PARSING WITH NOISE

The Slate system has a provision under the Repeat Sequeme operator which allows

a special symbol for "noise" to be substituted for an input symbol of the sequence.

When such a symbol is received, its occun nee m the sequence is recorded in the Slate,

but no symbol is recorded corresponding to that evert.

Figure 5.5 shows some sequences containing noise(«), together with the

corresponding Slate content schematic representation.

Each of these sequences is chunked correctly with 5 available chunk spaces. All

missing letters are filled in, and the output sequence is unbroken. The figure shows the

effects of having only 4 spaces. The first sequence which is "the blue dog ate tree,"

retains "the blue dog" in o single correct chunk, and the final letter. The second, which

is "big tree and dog," has a substitution of "the" for "tree." The final state also contains

an unfulfilled anticipation of another noun (I in the figure) to be first in the

noun-corjunction-noun group. The chunk for np "big tree" was lost partway through

the sequence input. The third sequence, which is "party on bear," does not chunk on

■ ettor N because a single letter is inadequate evidence for a word; short words are thus

generally more vulnerable under uniform noise.

■■..

^i^MMMU

jyr^ ■M l l l|^-P"»-T"» 11 >'•"! i' "^"^^mmm

Source Sequence:

Noisy Version Given:

System Output Sequence:

Final Structure Derivation:

5- 13

THEBLUEDOGATETREE

T«EB««E«OGA«E»RE«

THEBLUEDOG -UH- E

AN

THE

T • E

NP

BLUE L DOG

B
5

• E 0

Source Sequence:

Noisy Version Given:

System Output Sequence:

Final Structure Derivation:

BIGTREEANQDOG

BIGT»t«A»00«G

-UH- THEANÜO0G

AN

NGN

S

AND DOG THE I

1 r E I \ « D DuG

Source Sequence:

Noisy Version Given:

System Output Sequence:

Final Structure Derivation:

PARTYONBEAR

Pa»TY«NBE»a

-UH- NBEAR

NP

HAPPY

[YJ [NJB

BEAR

Figure 5.5 - Derivations on Noisy Input Sequences

E *

I I ■■!!■■ •!■

5- 14

RESPONDING TO SEMANTIC CONTINUITY«

On« way of describing the dif'erences between the normal sentences and the

anomalous ones is to say that there are semantic discontinuities in the anomalous ones;

certain words set up expectations which are fulfi'led in the normal sentences and not in

the anomalous ones.

We make this operational by including in some of the word chunks references to the

vertex constants PHYSICAL, EVENT and ANIMATE. These constants are held in common

bv appropriate pairs of adjectives and nouns, so that they are available as retrieval

indexes into bulk memory. The chunks are arranged so that tokens attached to these

constarts need not match, but occurrence of a match acts as evidence for the correct

mapping of a chunk. Semantic agreement between an adjective and a noun is signified

in the Slate by having a single token which has positively incident arcs for the relation

"expects" from the adjectivj and "fulfills" from the noun. This occurs whenever they

have semantic constants in common. Lack of agreement is signified by having two

different tokens for these ercs. Figure 5.6 show iragments of the chunks for the three

words BIG, SUDDEN, TREE. Figure b.7 shows a part of the graph which results from

• Up to this point the discussici has been m terms which required little knowledge of
the programs or trio chunk representation of the Slate system. It is necessary to use
such knowledge he-e in order to make explicit the result nf studying Miller and ls&. d's
♦ask. The representation and system description chapters are 12 through 14.

In representation-free terms, what is told below is as follows:

The Slate system achieves nearly complete aualitative replication of the experiment.
It is unable to achieve sufficient differences in performance between normal and
anomalous (syntactic) sentences. This is because the Slate system does not respond to
certain kinds of knowledge about the chunks already found. A more sophisticated
•ipproach would overcome the problem by responding to some particular Kinds of
c'lstinrtions which are not represented in the present system. These changes would
a so allow more concise chunk definitions and more efficient processing.

 ■ ■ ■ ■ ■ -- - - ■- - - - --'

ADV

is the symbol of

'5 t IS of type

SUDDEN ■«• +

expects

links

EVENT

ADJ

is the symbol of
BIG •* +

I is of type

\
expects

links

PHYSICAL

NOUN

tisof
of . I is the symbol

TREE —- r.

type

fulfills

' +

llinkt

PHYSICAL
Figure 5.6 - Chunk Fragments

 - —- -"- -■ ■ ■ —■ - - . w^,- -.-..■- -■ . , .. ■

■—^^^ ii mm im in ii ^^mm^mmunm

!

5- 16

is of type
+ «^ NOUN

BIG
symbol

TREE

Figure 5.7 - Se.nantic Agreement Condition for B1GTREE

is of type

ADJ

is of type

is the symbol of

SUDDEN »- +

is of type

:ts\ /fulfills

is the symbol of
TREE

expects\ / fulfills

♦ +

links

EVENT

I inks

PHYSICAL

Figure 5.8 - Semantic Disagreement Condition for SUDDENTREE

-•'--"'—-'"—- - ■■■■ n i i ■mfc --- ■ ■■ ~ -- - - - - - -

**mma^imm

5- 17

processing th» Input s#qu«nc» BIGTREE, and Figur« 5.8 shows the comparable fragment

from the sequence SUOOtNTREE. The fact that the arc to the vertex PHYSICAL !& •

region of overlap between the two word chunks Influences the system's Interpretation

of evidence. The Intent was that it would lead to relatively early examination of the

chunk for TREE in those cases where a PHYSICAL chunk was expected, for example, and

that this could be made to exhibit a bias toward semantic coherence.

If all of the retrieved chunks sre tried whenever an interprotation cycle (of operator

REGARD) is performed, then all syntsctically proper combinations will be found,

regardless of the presence or absence of semantic fit. Since the loss mechanism of the

Slate system is interference, an excess of uncovered chunks, there will be little

difference between the loss rates in normal sentences and those of anomalous ones.«

However, if the system is somehow "trying the wrong things" from a limited set, then

much larger differences should appear. W« use three devices to get this latter effect:

1. Rather than trying bulk memory chunks in the order of their
discovery, their names are held until retrieval is complete, and they
are ranked in order of a pr,: ^active degree-of-fit evaluation function.
The evaluation score for a particular chunk is the number of different
constants held in common by the chunk and the "hot vertices" of the
Slate.« /

a Chapter 13 discusses chunk covering as an element of Slate space management.

- - ^tmaa^m

1 ' ■ ' —p—,-™——^—

5- 18

2. The chunks are tried in r«rK order, best fit first.

3. A cutoff level is established, so that only the first N chu, s
are tried. This simulates limited time to respond in the experiment.

If these methods are effective then we should be able to chiose a cutoff level for

which the proper syntactic combinations are not formed when the semantic

discontinuities occur. This would leave more independent words in the Slate, leading to

early interference losses relative to normal sentences.

What happens Is that the method fails because an appropriate cutoff level cannot be

established. There are several reasons for this, the principal one being a direct

consequence of the way that candidate chunks are retrieved. We seek chunks which

overlap the Slate content, especially in their use of constants. The chunks that overlap

best with animate physical adjectives are those lor other animate physical adjectives,

not the nouns which they modify. As long as they all specify their expectations in the

same way, this kind of similarity overlap will exceed that of the complimentary expected

item, whatever it might be. No sensible cutoff threshold can be established, since the

number of similar chunks which rank ahead of the correct chunks depends on the

specific vocabulary and category involved.

* Chapter 13 discusses "hot vertices" as an element of query formation for LTM
retrieval.

L
■ - - ■ - ■ -

— ^ . .^ —^ ~ - i laiMii—M^l——a

5- 19

This it • serious representation problem that shows up as a source of inefficiency

as well as an inability to meet the quantitative data of Miller and Isard. The fact that

people's listening speed does not drop off strongly as their vocabularies increese

indicates that they have other means he dealing with this problem.

There ere some attractive methods which might be tried for overcoming the

difficulty in the context of the Slate system. It is intimately involved with some major

inefficiencies of the present system. (See the section Faster Methods in Chapter 15.)

SUMMARY OF PERFORMANCE ON MILLER AND (SARD'S TASK

We have observed the following features of performance common to the Slate

system and Miller and Isard's subjects:

Chunking:

Word segmentation and recognition are performed.

Syntactic assembly is performed.

Appropriate semantic comb:nations are recognized.

Chunking takes place in the presence of noise.

Loss phenomena:

TNs units of loss are among the largest independent chunked units,

(words and phrases), rather than subunits of these.

Small amounts of noise cause no loss.

Increasing noise results in Increasing losses end increasing

— ^_^J_^^_____^j

1 "■"'

5- 20

mispcception rates.«

Unstructured strings have greater loss rates than structured strings.

The importance of these qualitative features is simply that they show the model to

be capabie of approximately replicating the experiment, in contrast to models of STM

which have no means for dealing with these experimental phenomena at all. We know of

no other STM model which responds to syntax, performs in the presence of noise and

deals with composite stimuli. Many models either fail to address the task at all, or lack

enough detail to make a determination of their suitability for modeling these phenomena

possible.

.<■

* Miller and Isard do not 'pecifically mention
misperception, but we may presume thit it is one of their
error phenomena, since it is a conmoi experience in similar
non-experimental contexts.

-Nj

IIMMMIIHI iinti ■MMaMMiailf-""»iaiMiaiMiaaiiiMi^hMi«iaMiMafciaM* JMM — - - -- — - - ■ —

w»i .»■■■« «■ mi IIIMI i HW^flW^^W»- —.11 -lii > n B-mi

COMPARISON TO OTHER IU0DELS OF STM

CHAPTER ß-1

The simple idea of STM as a limited store, with the idea that the items in that store

are constructed by grouping given information, is adequate to explain some of the gross

phenomena of short term memory experiments. The fact that effective capacity for

ordered binary disits increases urder deliberate coding is one such phenomenon. The

approximately equivalent effects of words and cliches as interference units is another.«

The Slate system represents these phenomena much more accurately, in that it

rpcesents the sharing of STM as a woiKspace before and after chunking, and identifies

(he storage rule which determines how much STM capacity a group being formed will

take up.

There are a number of other moajls of STM which are relevant to understanding the

contribution of the Slate system. Each goes beyond the simple notions of STM and

chunking in various ways. The ones which are particularly relevant are those which are

explicit enough to show how phenomena might arise, which represent the form in which

immediately accessible information could be stored, and which represent how knowledge

from previous experience is brought to bear on the present task. Three of these

models are compared to the Slate system below.

« Chapters 3 and 4.

 —■'-^ — -^—-— - -.-*....*...

1 ■ "

6- 2

FRAN, by John Anderson, is of interest because of the resemblance
between the representation it uses and that of the Slate. [A68]

John Morton's model, remembered for its iogogens, is of p?rticular
interest in that it includes an explicit model of word recognition under noise.
[M69]

The EPAM model, also manifested as MAPP, includes both an explicit
recognition method and a representation of the nature of STM content.
[F59], [FS62], [GS67], [SF61], [IFWJ [SG73].

FRAN

The FRAN (Free Recall in an Associative Net) model is embodied in a computer

program which acts as a subject in standard free recall experiments.

"By 'standard free recall' we mean to reference those experiments where
the list to be studied is composed of common nouns chosen in a fairly
random fashion. The words are presented one at a time at a constant rate.
If it is a multi-trial experiment, study and recall pnases are alternated."

The model is built to represent the ability of subjects to learn lists with practise and to

show several effects which relate subjects' performance to linguistic relationships

between list items.

FRAN is a processor having three memories. The largest, LTS, is a network in which

words are linked together by relations, similar to Quillian's. [QP4], [Q59] The second.

STS, is a set of pointers to words in LTS, with a first-in first-out discipline imposed on a

fixed-length list. Another set of items, called ENTRYSET, is effectively a small memory

which functions under a different discipline than STS.

FRAN functions only as a free recall subject, alternately' receiving and reporting

word lists. When receiving a list, FRAN is marking its LTS in a probabilistic manner.

-■■■ "■" mmmmmmmimBmr*mim^r~mir~ •• •

6- 3

Marks are cumulative. Reporting a list involves searching for wads in marked regions,

starting from STS and ENTRYSET. The identities of the relations which hold LTS

together have no effect on either the marking process or the search process.

FRAN contrasts with the Slate system in a number of important ways. First, there

are no chunks in LTS. The system of words a-^d links has no natu al boundaries which

divide it into parts. Similarly the STS unit is always the word, rather than any sort of

familiar group. There is no encoding for word recognition or search for structure in the

incoming word sequence; BOWL PARADE ROSE and ROSE BOWL PARADE must be given

approximately the same res ..e. All of LTS is descriptive of the language of the

subject; there are no obvious means for storing information of other kinds.

These features of FRAN make it unable to deal with a broad range of phenomena

because it is unable to represent the structure of the given Formation. The parts of

FRAN have clearly bern included because of their potentki involvement in free recall

simulated-subject behavior. The system reveals structure in the task and data on

subjects, much as a grammar reveals structure in speech; it tells relatively little about

how a general intelligence might accomplish free recall as one of tlie tasks in its range.

In contrast, the Slate system is much broader in the range of tasks which it can

accotnpiish, but it has not bejn developed to the point of producing a diversity of free

recall phenomena.

. —, _■■. . ^,. _ _ . - -- - —'—-—- - - ■- ^^j^^^a^^^^^m^^^M^^

LOGOGEN MODEL

Uor,„n.s „Ode, «W. -ro. ^ * ** » " "« '—te - add,eSSeS m0,e

th3n on. .Pe-enta. pr^ « »«"" -^. •• P-* ^d '"0d8,S ^

.p.0,,,0 acous,. - ^ P-.-ena ^ « beyo.d .Ke .cope o. .h. Sie.e. W.

C3„ cohere ..e. word feco6n,t;o. .et.ods eed ****** feo,eSentet.o.s d.eCy.

Th6 „ooe, *- word-ee-o-e ««^ - " «^ "0'd-,",Ure

,he vocebo^y. A ,0,0^ . . K,od 0. ****** - '"'- «*- «^ "*

,ssu»ed .0 ar„ve a, one o. «« recoemzers .dependen,,,, one e, a -»e. As .h.

cor,.spondin8 .0 ,.0« H*~ *** « P- - - - -* U5",8 ' '08ari,hm'C

that ,H, coffespcod,o8 wore . -de ***, -or ou.po., and .sponsee ^ o.her

,o6o8ens « sopp-essed. » no.se . P-en,, .nen H „ay de ..a, no .^en «*- «.

.„„^ .decade son,e .ea.^e .en^ca.^n, we. adaenU » so, a» .dreanoids are

available for oulpot, and others are suppressed as befdre.

Use .'f cdnte«! is effected as fcildws:

-T ec, of a cdnte.t <>***■ ^^S™ * TwtS
principle to the effect of a st-uljjs. The ">">"'•»™ d ser„an,ic

Lses what 1. here cal.ed the ^ '' ^^^ ""„pp^, <,„,„,.e>,
information to the Lososeh Syslerr.. Attributes s __,_. ^ ,

<male> ™ght te produced "'lte'e,f e„t^f hese tems would be ■

source.'

 —■ ■—■ ^^mm^mmm^ma^mmm.

TTT- ■ ■ ■ m^^^r^immmmmpm***"* »IHJH ■ u^wp^wiiwpiw^pw^p«

The Logogen and Slato modals aro similar m tlut they have explicit word

representations which are used for recognition, and explicit processes applied to the

input characterizations. Both de?i with noise as a kind of incompleteness of input. The

logogen system relies principally on arithmetic methods for judging evidence, whereas

the Slate system relies on more qualitative and logical matching methods.

The aisumption that words arrive one at a timr turns out to be essential to the

Logogen model, since the recognition process selects one word for each group of

features presented. The model is inappropriate for connected (ordinary) speech and for

other composite stimuli in general. This is a real weakness, since there is evidence that

there are no consistent acoustic features which correspond to word boundaries. [N73]

Composite stimuli also occur in a number of classical experimental paradigms, including

monaural shadowing.

The capacity of the Slate system to deal with composite stimuli is most clearly

represented in its chunking of computer instruction streams, presented in chapter 9.

Most words in spoken or written English aro redundant, so that more independent

features of a word can be found than are needed to identify it. In the absence of the

complete set of features, some c.jbcet can be used to identify the word correctly in its

logogen. (Some such capacity is necessary in any syctom which is to recognize in the

presence of noise.) Identification can occur in spito of the presence of features which

indicate that the word does not have the correct form. Thus if the word REDACT is

unknown it may be identified as REACT, rather thtin as an unfamiliar combination. What

is missing is the ability to respond to contrary evidence, to respond to those features

■fclll ! ,,■--■■'- ■■ ■ -■■• ■■nlmi n ! _—^ --- - ■-!■ in mf-M - MM^

»•»^OT»

■
' ■" ■

6- 6

from all of speech which should not be present in the given word.

Word recognition depends on a complex variety of related kinds of evidence,

requiring in the model of the recognizer a corresponding capacity to deal with

complexity. The Slate system deals with a greater variety of evidence than the

Logogen model, sine« it does respond to contrary evidence in the form of conflicts of

relational properties. These conflicts occur in a variety of ways, so that the Slate

syst.-m incorporates several different methods for responding to contrary evidence.

The model as stated has a flaw which could prevent it from functioning at all. The

context mechanism described above does not distinguish between a word in the context

and a word in the stimulus when collecting evidence in the logogens. The first word of

a sequence which was recognized would enter the context (in the Cognitive System)

with all of its features, i.eeping its own logogen above threshold and thereby

suppressing all further recognition, ^ny of several minor modifications would eliminate

this problem. It is a non-trivial problem, however, because it is necessary to provide

some means of recognizing and representing the second occurrence of a word in a

context. {On this basis alone, we recognize that Morton did not test this model.)

Two related problems are more serious. First, the ast.umptions about an effective

way to derive a contextual bias toward certain words are equivalent to those we used

to attempt to get the same effjet in an experiment above. (Chapter 5.) They failed for

us for reasons that seem to apply equally to Morton's model. The role of a word in

context generating expectations differs from the role of a word being recognized, so

that the recognition features are unsuitable as context cues.

 —■———

WIPWW^W""

6- 7

A second problem concerns the possibility of an excess of evidence from the

context. It is possible to match enough context to rocognizü a word with no evidence

whatever from the stimulus. If context is thereby expanded, the process may not stop.

During the development of the Slate s. stem, some versions had a tendency to enter

such fantasies freely. The problem would seem to be worse with Morton's system

because of the lack of response to contrary evidence.

The form of this model differs sionificantly from that of the Slate system in that

separate facilities are used for deriving features, recognizing words and using words.

Since we have found STM to be a bhared workspace, where grouped and ungrouped

elements reside together, this feature is questionable.

The knowledge of words in the logogens is committed to the single purpose of word

recognition in the Logogon system, whereas in the Slate it is available for either

recognition or generation. (Chapter 10.)

MAPP AND EPAM

These two systems are represented together here since they are variants on one

theme. EPAM (as EPAM III) performed various verbal learning tasks, and more recently

MAPP has been developed to perform a chessboard observation and reconstruction task.

[SG73] The systems use a common form of LTM to store the relevant task knowledge.

One half of LTM is a discrimination not, a binary tree of tests on available information.

There it a single entry point, and at each of the terminals of the tree is the name of an

■

MMMiMMlMMtaAilMAMttuiitaaMiaM in i ■ mm'i li nnaiwM

• ■'■■" • '■' m —'—«———- ^^m^^n^mm^mm

identified chunk (stored m the other half of LTM) which has been located by the ut of

tests on the path from the top of the tree to the terminal node.» (Th.s chunKmg aeon

makes it d,rectly comparable to the Slate system.) Tho STM is an unorde.od set of these

LTM chunk names.

Since MAPP must process one set of given information (a chessboard) through one

tree of tests and yet obtain more than one result,n3 chunk, it needs a means for varying

the path through the tree. The mechaasm which does this is a chessboard scanner

wh.ch is part of the task supervisor, it selects a varying starting square based ,n part

on the most recent tests of the board. After a fixed number of chunks have been

identified. STM is full and observatior, processing stops; nothing leaves STM.

Board reconstruction ,s then performed by reading the contents of the chunks

named m STM. each rhunk being a set of pieces with their locations specified. EPAM is

able to deal with incomplete stimuli if the missmg parts are all m places in the stimulus

which are not subject to tests in the discrimination net.

"Images may also be evoked upon presentation of partial stimulus objects

(as C-T may evoke CAT)." [SF62]

MAPP and EPAM both perform exact matches in the tree; all elements tested for must be

present. For redundant stimuli, this converts the recognition problem into a smaller

recognition problem on a non-redundant stimulus. Tie redundancy is therefore

• Part of the importance of EPAM is that it embodies an explicit theory of the acquis. ion
of the knowledge of single stimuli.; the Slate system lacks such a theory Neither Slate
nor any of the EPAM family performs acquisition of LTM chunks based on composite sny
stimuli.

IM mtt ■ ■ -_ ■

■■■■' ^p ^ ■•l»«p»«"l»"»^~« ' "" '•* I Li^^^^i

unavailabie to combat noise during recognition. In MAPP the tree always contains an

exhaustive set of tests ;or each chunk. This is appropriate for their task, since the

chessboard is entiiely visible during the time in which It is being observed.

We have tried to find a straightforward way to augment the EPAM/MAPP techniques

in order to let them handle single incomplete stimuli, but there are difficulties. One

approach is to let the t'ee be ternary, with a possible indeterminate outcome on each

test. FW« leads to combinatorial r-.-pansions of the tree. To recognize a 10-letter word

by any 5 or more letters present requires at least 252 different pre-terminal test nodes

for that one word. There is no corresponding expansion of the Slate system because

the set of tests to be applied for a given chunk is generated from the chunk at match

time.

Since terminal nodes in the tree corrbipond tr single identified stimuli, the system,

like the Logogen model, is not suitable for assimilating composite stimuli. In the case of

MAPP'S treatment of the chessboard, which is a corrposite stimulus, the problem is

avoided by use of its chessboard scanner and by performing a complete match to detect

any chunk.

If incomplete and composite stimuli are to be acsimilated, then the tests performed

must be somehow constrained so that the elements of one chunkable configuration are

never taken as parts of another. So, given

THESUN

we must not take the final N as evidence for the word THEN. The means available in the

Slate system for getting these tests to come out right are clear because the chunk

 - - - — MMMMMMMMMMMM

6- 10

graphs are available and the tests are ail enoodied as graph matcn acceptance tests.

For the EPAM family the case is less clear because the set of allowable tests and the

representation of the stimulus are not similarly constrained.

Because SIM is an unordered set of pomters to chunks, the things which can be

Known in STM are limited in strange ways. There is no place in the EPAM memory to

store information from the stimulus which is variable from one occurrence of a chunk to

another, rather than being fixed as part of the chunk. An example is the inability of

MAPP to hold a single chunk embodying the concept of "two knights in mutual defense"

wh.ch was discussed in a prev.ous cnapter. Since th* Slate retains arcs which express

toe assertions abet the stimulus which do not match the chunks, this is not a difficulty.

The problem of represents variability also makes it difficult to adapt EPAM or MAPP to

respond to syntactic structure, wnere the combinations of allowable words in phrases

should not be enumerated in the tree.

Because the stimulus is di.tmct from STM. and testing in the tree is applied only to

the stimulus, the EPAM family does pot exhibit a shared workspace effect. The

"workspace" of EPAM is the locus of control in the tree.

Each element of knowledge embedded in a test in the tree must be independently

re-represented in the chunk at the terminal node so that the knowledge becomes

accessible from the name of the chunk. This double representation is avoided in the

Slate. The difference is mostly an aesthetx matter for computer models, but becomes

more serious if the physical embodiment of the knowledge is subject to error, since the

two may drift apart w.thout detection. Whether double representations are empirically

- — -- ■■- •'•■ - -■ ■ ■ - ■ ■- - '-'—L:--

^W^^*»WIII II II1 I

6- 11

justified (by data on aphasics, for example) is unclcor.

COMPARATIVE SUMMARY

Several of the points of comparison which appear repeatedly above are summarized

in Table 6.1 below.

COMPARISON

Encodes on incomplete input

SYSTEMS

SLATE LOGOGEN EPAM/MAPP

yes partial yes

Recognizer ac-:pts
composite stimuli yes no no

Shared workspace effect yes no no

Variable information
in STM yes no no

Table 6.1- Comparisons of Systems

Each difference has sono direct effect on the range o' experimental tasks and data

which can be accounted for.

i i Mil ■■■ an Inn ■ ii ^MMaMMMMMMiiri

PSYCHOLOGICAL SUMM, /

CHAPTER 7-1

The purpose of this section is twofold: to discuss some psychological topics which

coin the experiments and theory at riand, and to summarize our psychological resu'ts by

presenting them as a coherent theory. The topics to be discussed are:

Interpreting the Shared Workspace Effect
Seriality
Variability and novelty
The role of redundancy
The role of conflict
Efficient control of well-practised tas1^
Opportunities created by this work.

INTERPRETING THE SHARED WORKSPACE EFFECT

We have seen in the studies of interference and coding that capacity for holding

symbols before chunking t!iem into groups and capacity for holding the resulting group

churls are subject to a common upper bound on their sum. The upper bound is applied

continuously, so that at each point in the reception of a list, chunKed and unchunked

symbols may compete for space.

complete fragments of
chunk«: + incomplete

chunks

total
s capacity

In both of the experiments in which the shared workspace effect appeared, the

fragments were words (one, zero, rose, bowl.) An understanding of the diversity of Kinds

of fragments which share this (or other) workspace would be particularly interesting

■'— — — ■■ ■ - -

PSYCHOLOGICAL SUMMARY

CHAPTER 7-/

The purpose of this section is twofold: to discuss some psychological topics which

span the experiments and theory at hand, and to summarize our psychological results by

presenting them as a coherent theory. The topics to be discussed are:

Interpreting he Shared Workspace Effect
Seriality
Variability and novelty
The roie of redundai.:y
The role of conflict
Efficient control of well-practised tasks
Opportunities created by this work.

INTERPRETING THE SHARED WORKSPACE EFFECT

We have seen in the studies of interference and coding that capacity for holding

symbols before chunking them into groups and capacity for holding the resulting group

chunks are subject to a common upper bound on their sum. The upper bound is applied

continuously, so that at each point in the reception of a list, chunked and unchunked

symbols may compete for soace.

complete fragments of
chunk- + incomplete

chunks

total
capacity

In both of the experiments in which the shared workspace effect appeared, the

fragments were words (one, zero, rose, bowl.) An understanding of the diversity of kinds

of fragments which share this (or other) workspace would be particularly interesting

i i iMfiM^ tani« i ■ ^ ■ - - ' -

TTT* " ■ mv i ■■ -T- - —" -""■— ■ wmt^mm^frm^^^^^^

7- 2

because It would exhibit ajme of the relatively inaccessible structure of STM.

The fact that the effect is a bounded sum of memory capacities has consequences

for the admissibility of STM models in general. (None of the 3 alternate models

discussed above exhibits a snared workspace effect.) The only sorts of structures which

appear to be suitable for accounting for the effect are various kinds of memory

resources shared by multiple processes or information sources. Every insertion in such

a memory must obey its capacity limit formula. Our experiments deal with two kinds of

insertions:

1. An item is received prior to (bunking.

2. A complete group of items is consolidated (chunked) into a unit.

Figure 7.1 illustrates the information flows of these two kinds of insertions, based on the

assumption that the Knowledge which is the basis of consolidation is stored in LTM.

ITEM SOURCE u SHARED STORE v3 LTM

Fisure 7.1- Shared Store Information Flows

Since we believe that information comos from LTM on the basis of some kind of

search or association of content, we must add a flov from the shared store to LTM, thus

forcing a loop. (Figure 7.2.) No matter how we complicate the model, some manifestation

of a loop will remain. (Note that this loop Is not the long term storage and later use

 —^J

1 I

SHARED STORE

T

search

consolidation

Figure 7.2- Inherent Loop in Workspace Model

loop, but rather a loop entailed by single acts of chunking in recognition.) On this basis

we may rule out all models whose information flows do not contain a loop through the

shared store and LTM. All "pipeline" models, in which information transformations form

a chain (or a lattice without loops) from stimulus receipt to response delivery, are ruled

out on the assumptions of a shared store and LTM search. Since such models are rather

numerous, this provides an interesting means of discrimination.

SERIALITY, PROCESSES AND SHORT TERM MEMORY

In seeking to understand human "short term memory behavior," a great variety of

descriptions have been formulated. They exist in a diversity of representations,

including verbal Statements, statistical hypotheses, computer programs, flow charts, and

so forth. One point of concensus is that there is an aspect of seriality about

STM-related activity, that at some level of description it is accurate to say that things

happen one at a time.

■ - — -

w.'ir

7- 4

The seriality can be attributed to the retrieval processes which access long term

memory, the processes which accommodate the results of retrieval, control processes

which use STM QS a resource, a requirement that certain operations on STM use as input

the results of other such operations, or the nature of STM itself.

At first glance it would seem that the Slate system could not provide any evidence

on the nature of this seriality, since all parts of the system operate on a serial

computer. However, we can dismiss some of this seriality as inessential and show that:

1. The Slate system must behave in a fionerally serial fashion.
2. its essential seriality is extremely local.
3 The essential seriality arises from the properties of the Slate
memory itself rather than the retrieval or control processes which use

4. The need for those properties arises from the nature of the
chunking task.

In chapter 16 It Is shown that there are no serial constraints on the process of

locating chunks in bulk memory which are candidates ror entry into the Slate. It is also

sliown that there are no order constraints on the transfer of elements of a chunk from

bulk memory into the Slate. Either each element of the chunk is successfully transfered,

or one of the essential conflicts between the chunk and the Slate content is found. Any

one may be found with the same effect: rejection of the bulk memory chunk. Since both

me identity of the particular conflict which is found and the order of events leading to a

conflict are irrelevant to the result, and since all of the possible ways of succeeding are

equally acceptable, the transfer may be developed in a parallel fashion.

—"■^-~ ■ ■

r-

7- 5

ln con*..., *. ******* -— - ^ S",• iS -** "" "

asl.rtiont. Th. i. n.C«..-ily • «^^ — ™ " i"U,,",,d ' ""
^ •„ 11 .hare Ihe oii«-hypo.h«si«-.l-.-.i™

„,.mpl. of M» N.ck.r Cub. .n ch.p..r U, wlw.

p,oper.y o. M Mt IM* ölr«.l, .o . r»»- pt-^e-ior.

Th. on..hypo.^i, prop.., - — * - *- ^ '" S'S,6m- ^'^

was . p.rticu..f **** o. i.. »-i-v **«->' «^ h si"ce " W'S

W. d..ir.U c. ..— -« * - -«*- ,0 KW"b'e •",ern"

...P,.....™ b. -— - v-' - - ^ — ■n,erPre,,,i00S

.„ th. .p.ci.ic or ****** « The M M ». -e-ry M. « «•

w ..Oic. 0. . ****** * -* «» — - ' "P"S"",,i0n '" Wh'Ch

«-»-«t i< satisfied by the memory
function.l requirement for coherence of memory content -s

itself.

.„„,.„.. Ooo..c.^ Kypo,...« -. b. coo,*.- on. .. . **. « —

.d,p.n..n. hypo.h.«. ™y - —«- - - - -" - M "" " "^ "'

,...„... Th. *~** .. «* - - " ' COnWUenMS in *"

prediction«.

mmm mumma

mi^Km*m^*^

7-

VARIABiLITY AND NOVELTY

The ropresertation of a chunk in the Slate system allows for the chunK to specify

essential attributes and to fail to specify attributes which may vary freely over the span

of application of the chunk. This allows familiar chunks to appear in novel combinations,

and provides a homogeneous medium for representing familiar and novel aspects.

Consider fcr example chunking of piece configurations on a chessboard, where we wish

to be able to treat the notion of "two knights in mutual defense" as a recurrent

configuration represented by a single chunk. In the representation described in chapter

12, we might use the graph in Figure 7.3 M the chunk. The relationships of defense

and type must correspond to the board for the chunk to be applicable. In contrast, the

specification of the particular piece locations is vjriablo from one board position to

another.

It is essential that a theory of STM provide for the occurrence of both types of

information. It would be unreasonable to require specifications of board locations in the

chunk (the approach taken in MAPP), since this would limit its application in unproductive

ways. It would likewise be unreasonable to prohibit representation of the pioce

locations in STM because they were not included in the chunk.

The alternative of providing (in one's theory) two different sub-memories of STM.

one for chunk recurrences and one for novel information, does not seem to be justified

in its complexity by our present knowledße of STM phenomena. It also leaves the

problem of explaining how things in the "novelty representation" submemory can be

made to eventually appear in the "familiar chunk representation" submemory.

- ■ — "

7- 7

KNIGHT

Figure 7.3- Chunk for Two Knights in Mutual Defense

The Slate system provides for the occurrence of both kinds of information by

providing a homogeneous medium in which chunks can be further annotated by

assertions which are peculiar to the occurrence at hand.

 ■■. MMMMMBJ

•wawaMBM^^^WOTV^v^^^^ww^wHwwwwa , , t^m^mm

7- 8

REDUNDANCY

It Is nocessary for a thoory of human Information processing to represent the fact

that people can make effective use of the redundancies In information presented to

them. Identifying words In the presence of noise Is one Instance of this capacity, which

extends across sensory modalities. Presented Information can be Incomplete in

numerous unpredictable ways without disturbing the subject's ability to interpret It; the

Information which remoins is usod to Idontify and comploto the whole. The difficulty for

an information processing theory is that the methods for Interpretation must cope with

the whole range of variation, in which tho Information needed to make particular

elementary decisions during interpretation may not ba present. Sufficient comblnatiors

of parts must be detected In order to identify objects. One way to deal with this need

is to enumorate all tho sufficiont combinations and seek each in turn. The enumeration

might be dono either at tho point of nood or a-priori, but it is subject to combinatorial

explosion of the number of cases either way. Some theories would require an a-priori

enumeration, vastly complicating rets of interpretation.«

Since a recognition set which loads to idontifying an object must be able to deal with

the entire object, it Is natural to includo tho use of redundancy as part of the chunking

process. The Slate system usos tho redundancy of c'von information without engaging

• See the discussion of Mapp below.

- —

^^w -'*- ' ' ■ imve^miKirmmmiqm

in any enumeration of the possible incomplete manifestations of possible objects. The

given information must agree with the corresponding chunk for recognition, and the

missing parts are simply filled in from the chunk. Identification depends on the amount

of positive evidence, not on its configuration. Thus it is reasonable to consider the

Slate system as a model Of human chunking in complex redundant environments, since it

avoids engaging in a comoinatorially large number of elementary steps.

THE ROLE OF CONFLICT IN CHUNKING

People are selective ir their chunking behavior, so that they do not chunk given

information in ways that are "obviously wrong" in the given symbolic context. The rules

which define what is "obviously wrong" are task dependent. For letter strings we have

used the rule that at most one letter follows a given letter in a totally ordered

sequence. It has turned out to be vital to be able to reject certain chunks even though

they fit well in part, by use of such rules of conflict. The continuous application of such

rules keeps the Slate content coherent.

We might imagine that the set of such rules grows as fast as the set of tasks that

we attempt, but such is not the case. All of the rules of conflict have been codified into

a small number of classes which are used on all of our tasks. The current Slate system

uses 9 of them. Increasing the fluency of ihe representation might cause this figure

to rise, but we expect that the set would remain fairly small. The discovery that such a

small set ic adequate to support chunking processes is one of the interesting

psychological results of the work.

^——A^Mamaa-Mai ■ I "I

—w»

7- 10

It it interesting to consider what would be the effect of adding these rule forms one

at a time to a chunking system, seeking to determine its range of application at each

step. There are so few forms, so broadly used, that we can anticipate large qualitative

changes in system capabilities with each addition. Operjtions which were impossible

might suddenly be trivial, and information which required long times to organize might be

handled in a glance.

Similarly we can ask about the development of the same fundamental forms in

humans. Do they exhibit a developmental sequence? Is it the same for all individuals?

Are the sequences which occur limited only by formal necessity or are there other

limits?

The role of these forms in the Slate system suggests that they might generate e

developmental sequence of qualitativelv different intellectual capabilities. Comparison

to the work of Piaget is therefore of direct interest.

CONTROL OF WELL-PRACTISED TASKS

This research hes not focu:od on tha form of control of tasks which include

chunking. The capacity to chunk eppoars ts a separablo resource which may be utilized

and directed by goal orientod processes. We havo evidence in the tasks examined of

people's methods for using the chunking resource effectively.

From Smith's coding task, it appears that he was not chunking except at the ends of

code groups. Since the groups have no internal redundancy, this is the first point at

which there is more than a 5011 chance of correct chunking. In the symbol string tasks

 — -

7- 11

we hive found • significant efficiency advantage in anticipation, chunking before all of

the evidence is in. The advantage is lost if many of the antxipations are wrong, leading

to wasted reformation of memory content.

The kind of COP*-OI of chunking which we expect on a well-practised task balances

the effort savings of co. »ect anticipation and the effort loss from bad anticipation, so

that chunking it initiated when there is enough evidence on hand so that there is a high

probability that the result will survive.

We also expect that control of well practised tasks will devote a maximum amount of

r M space to achieving task performance, eliminating extraneous chunks. Smith's

performance is particularly stable in his use of his 12 chunks.

For less practised tasks, control of the initiation of chunking is less effective, so that

the apparent number of available chunks is lower and performance rates are lower as

well. Improvement in performance with practise can thus arise either from iMprovement

of the control process or development of more suitable chunks.

The scope of control of chunking may also encompass the selection of parts of STM

content as interesting and the decision to abandon or retain chunks; the Slate system

doe« not provide for these kinds of control in its present form. The evidence from our

tasks suggests that there is task control over the moment of application of the chunking

process, and that that control is most effective when there is a high probability of

survival of the result whenever chunking is initiated.

 mm MMHHHHMB

mmrmmmrm

7- 12

OPPORTUNITIES CREATED AND FACILITATED BY THIS WORK

This section presents several short sketches of psychologically motivated

developments which might be pursued with this work as a starting point. I view them as

resej ch projects relatively closely coupled to the present work but for the most part

loosely related to one another. Another group of opportunities with non-psychological

motivations appears elsewhere in the thesis. The opportunities discussed below are:

1. Learning Models
2. Single Modality modols
3. Second-generation Study ot Noisy Speech
4. Representation Development
5. Structure of STM

1. In building explicit models of learning followed by perfo-mance, it pays to be

sure that achieving the learning will be sufficient to permit the desired performance.

Having such Knowledge, we can separate the model-building problem into two

subproblems:

1. Find an adoquste reprejontation end content for the learned
Knowledge, where adequacy is domonstrated by using the Knowledge
to achieve thn dosirud performance.

2. Find a way to get the system/organism to change from its
beginning state to one which incorporates that specific representation
and Knowledge.

The advantage of this organization is that any failure of performance can be

identified at either a failure to reach the desire d knowledge state or a failure to use it

properly. The site needing improvemeri is thore'ore Known at each failure. For most

Kinds of human performance we lack the knowledge of an adequate representation.

i mnwvmmmmm^vm mtmi't ii

7- 13

Some progress is evident in models of game playing, and good representations are

Known for many numeric and symbolic mathematical tasks.

The opportunity provided by th.s work is that it offers an explicit representation

whose capabilities are understc. i and demonstrable. The development of a learning

model can focus effort on the questions:

1. How can chunks like those of the Slate system be acquired

from experience?

2. How can appropriate control processes be acquired?

The learning of chunks is f. «rticularly interesting since, unlike control processes,

they are not identified with particular tasks. Chunks might be learned as follows:

Our representations for knowledge and experience are homogeneous, so that it is

possible to «tore experiences ill LTM, chunked to whatever degree occurs, as well as

abstract knowledge. We can discover correspondences between stored and current

experiences by using matching methods like those which we have already used to relate

chunks to current experiences. Regions of stored experience which repeatedly

correspond to new experiences can be abstracted, named and stored as chunks.

2. Single Modality Models - Our MM ef the Slate system have not addressed the

details of any particular sensory modality. There are a number of specific phencmena

related to chunking activity wh.ch need to be accounteo for. An example would be the

various categories of erro'S in auditory memory experiments. In order to model them

with a Slate-like system, initial requirements would include a substantially faster system

■ - ———

m m ' '

7- !4

and chunks which reflect the fine structure of the input information to be organized

The Slate system can be examined as a model of Knowledge use for a variety of time

scales of human performance, from the several- millisecond level to the multiple- minute

level. Visual tasks can be addressed if the handling of positional ordinality is improved.

3. Second-generation Study of Noisy Speoch - Our study of noisy speech has

pointed out an inadequacy of the Slate ropresontation for expectations. The inadequacy

Is not identified with particular task domains or sensory modalities. A new approach to

characterizing expectation could be developed along the lines of the learning model

described above. It would be possible to ask of the stored experience: What normally

follows this chunk? or What regularities are there in what normally occurs in the

neighborhood of this chunk? Alternately an abstract expectation part of a chunk might

be developed.

4. Representation Development - The power of the representation in the Slate

system is too weak for direct application to semantic investigations. Specific

deficiencies are d;äcussed in chapter 17. Development of the representation would

make it possible to study issuer of how subjects understand and misunderstand the

experimenter's instructions, what is the possible range of subject's task representations

for a given set of instructions, and how instructions affect performance. The fact that

subjects regularly do what they are told to do by experimenters is one of the most

frequent and least modeled experimental phenomena.

5. Structure of STM - There is evidonce that between the most primitive sensation

of external energy and the workspace for chunking of words into phrases there are

W*mmm*TmB*^*~iii it m MmmBmmrmmmimi^mmm^~~mmm^m^mi^~mmmmmm^m*^^mmmmm»>

7- 15

other forms of memory. We can push examination or the shared workspace effect in the

direction of more elementary constructs, and perhaps discover a boundary of sharing

below which workspace is not shared with words and phrases.

THEORY OF CHUNKING

This section summarizes the psychological results of the thesis by presenting a

theory nf chunking derived from work with the Slate system. The theory makes explicit

*ha; parts and features of the system we regard as theoretically relevant.

The theory is an explanation of human acts of information organization which put

knowledge of given stimuli in correspondence with previously acquired knowledge. The

organizing behavior is not identified with any particular sensory modality, but rather

spans several, including hearing and vision. We do not identify organizing behavior with

sensory activity; rather any source of information is potentially subject to organization.

The theory is not specific on time spans. The elementary presentations of the

experiments studied take from several hundred milliseconds to a half minute or so. The

chunking is rapid enough so that it does not limit the rates of most human activity.

The results of organization are discrete symbolic augmentations of the given

information.

 ■ - ' ■- .■.-.--- ■ ■■ — — --■ - -- .-■ -- ~.„„^.. ■ . ; , - - , ^. - .,. _. ...L^, . ._^.1. .J._J...,^fc-^J>^JU.J^J^

■ i mi

7- 16

ELEMENTS OF THE ORGANIZING PROCESSOR

Organization is performed by an information processor which consists of:

1. A long-term momory
?. A sh' rt-term momory
w. Means of access to information sources
4. A chunking process
5. A control process

1. The long-term memory {W is an associative memory, I.e. It can be accessed

only by partial specification of the content which is of interest. It contains an unlimited

number of non-overlapping chunks. Each chunk is a set of assertions. Each assertion

|g an ordered n-tuple of symbols, one of which (the relation name) is subject to

constraint« of occurrenco. There is a small fixed sot of forms which specify how

occurrence« of relation names aro conslrained. Constraints appy to the entire content

of the memory. The number of symbols which may occur ic unlimited.

2. Short-term momory (STM) is an associativo momory which is able to hold

assertion« of the same Kind a« LTM, using the same symbols end constraints as LTM.

Each assertion In STM is part of one or more identified sets of assertions (chunks) in

STM. Chunk« in STM thus may have assertions in common, in contrast to those of LTM.

In the «en«e that the conatraint« of occurrence must hold for the entire STM c0P*<»nt.

STM i« • «ingle- hypothesis memory. There is a small fixed maximum number of STM

chunk«.

3. Each access path to an information source is a means by which chunks are

inserted into STM Each «en«ory modality which affects STM has one or more such

access path«.

 ■ - ._.-.......- —„... .— . —.—^.

7- 17

4. The chunking process operates in discrete steps, each of wnich is an attempt to

partially match current STM content to LTM chunks and copy the LTM chunk into STM

under the guidance of the match. Each step has one of two outcomes:

1. The content of STM is unchanged, or

2. One chunk from LTM is used as a pattern to construct a chunk in STM.

5. The chunking process may access any number of assertions in LTM at one trr.e.

LTM content is unaffected by the chunking process.

6. The only way in which one step of the chunking process affects another is by

alteration of the content of STM

7. The chunking process may have no effect on a particular step because the

achievable overlap of the LTM chunk to current STM content is too small. (Overlap is

the set of assertions in common.) Among the feasible ways of copying an LTM chunk into

STM, the chunking process tends to pick one with large overlap.

8. When a chunk is copied from LTM, a new chunk is formed in STM which contains

all of the copied assertions and all of the assertions in chunks overlapped by the copy.

9. The control process is capable of initiating the chunking process. The control

process selects the particular chunk to be removed whenever the fixed limit of chunks in

STM would otherwise be exceeded, and may select chunks for removal under other

conditions. The control process may create and insert chunks into STM

^.^ .- -■ —^ ' - -. -. i i, ■ — ■ ^^Ha^K^MAa

m^mß^mmwi^^w mmmm |»"11"»' ".■■ **'*•' ^'i

7- 18

10. Chunks in UM will not bo copied into STM if their assertions span sorial

Information access which Is not yet complete.

11. If there is a chunk whose assertions have boon included in another chunk in

STM, such a chunk will be soloctod for removal in preference to a chunk whose

assertions are not so includod. (This part and parts 2, 3, 8 and 10 above embody the

shared workspace effoct.)

We can see that the above theory is partial in the sense described in the

introduction, that it covers organization and representation of current events in

accordance with prior knowledge, but not the creation of the chunks of prior knowledge

which constitute LTM content.

u - - -■ -■ ■ ■ ^^^AMMMMk ' - - - - - —■^^.


~~~~~~m-i-~~---~~~~m~mm**m~m>~~~~~~~-~~-~~~~~~~'  

STUDY OF AbjiM.LAT.ON METHODS 

CHAPTER 8 / 

From this point on Our attention is on methods for ach.eving assimilation. We are 

interested m knowing how assimilation problems may be solved, what makes them 

difficult and how various ;„0*hods differ in their capacity to assimilate. 

The- difficulty of the problem is somewhat obscured by the simplicity of the tasks 

taken up in previous chapters. The/ suggest that assimilation might be performable by 

a simple string match of some sort. 

In order to evaluate this suggestion, we might view string matching as a simple 

primitive process with unspecified control. Alternatively we might examine 

sophisticated string matching approaches with highly developed control mechanisms to 

see what they might contribute. We choose to do the latter, using SN0B0L4 as the 

representative body of methods. Chapter 18 includes a reexamination of a task 

introduced in Chapter 9, showing how Snoboia's string-match control methods fail to 

respond to some of the most important features of assimilation. 

Three new assimilation tasks are introduced in chapters 9 to 11. They each serve 

to demonstrate diversities of Slate system performance that are required for some 

assimilation tasks but not for the psychological experiments taken up thus far. The 

directed graph representation is presented in Chapter 12. The structure of the Slate 

system is presented and its heuristic methods -re analyzed in various ways in Chapters 

12 to 14. Its use of time is presented in Chapter 15, with some suggestio-s for 

significant improvements. 

.  .-_■    ,. J-, ..■ _-..--- ...^.        ...,..._,     —.^ --        -    —■-^■in ■ -   ■ -    ■-   ■-      ■-       . -   ^- -- . ^-.. . —...-- -; ■ — ii  m    uit**tmMtmmam*mä*ailttmnitätimmm* 



" 

„mmimmm   ■■ ■« — im IH mil ■ ^"^«W^^^W» 

8-   2 

The remaining chapters are devoted to interpretation of the system. It can be seen 

as a highly parallel production processor which is serially implemented. (Chapter 16). 

The generality of the system and the power of its representation are evaluated in 

chapter 17, and it is contrasted to other relatively sophisticated m94:h-based systems in 

Cnaptar 18. 

  ■ - -— — ■  MMHUMMMi J 



DISCOVERING CONTROL STRUCTURE IN MACHINE CODE 

CHAPTER 9-/ 

THE PROBLEM OF DISCOVERING PROGRAM CONTROL STRUCTURE 

The problem is one of assimdating computer programs written in machine code 

according to knowledge of the control structures of a source language. Given the 

machine-language results of a compilation, we would like to be able to recover from the 

program a complete account of the routines, loops, case statements and so forth found in 

the uncompilod program, by examination of the compiled instructions alone. The 

problem as stated is less than complete "decompilation" in that it does not aim at 

reconstructing a full program text or describing the non-control parts of the program. 

(It appears that the latter is a straightforward extension of the methods used below.) 

EXTERNAL PROBLEM REPRESENTATION: A compiler produces a 
machine language program from a source language program, 
representing the result in a listing. The machine language 
descriptions in this listing are the external representation of the given 
information. 

INTERNAL PROBLEM REPRESENTATION: A "problem graph" 
containing vertices which correspond to the machine language 
instructions listed in the listing, their operation codes and memory 
references.   The source language ^lugram is not represented. 

SOLUTION REPRESENTATION: The problem graph is augmented with 
vertices and arcs which describe the control structures attributed to 
the source language program. 

CRITERIA FOR JUDGING SOLUTION: 

1. Any control structure known to the Slate 
system and present in the actual source program 
must be identified in the machine code. 



r 

-^^ '• •■"     ■    ' 

9-   2 

2. The boginning and end of the scope of each 
control structure must be correctly identified. 

3. Mutual röferunce (such as occurs betwoon 
routine colls and routines) among control structures 
nust be identified. 

4. Any control structure not present in the 
actual source program must not be identified ii She 
machine code. 

5. Parts of identifiod control structures which 
are represented in the system's knowledge must 
also be represented in the result. 

6. All of the assertions of tho solution must be 
mutually consistent end comistont with the 
assertions of the problem representation. 

The compiler used is the Bliss compiler for thi PDP-10 computer. Bliss is s 

language with an Algol-like block structure. Since our examples will use only a portion 

of the language, we will present only those constructs actually used The extension to 

ell of the Bliss control constructs is discussed later. 

Figure 9.1 shows a short program in Bliss. 

_ .  -       J 



MODULE XX-( (1) 
ROUTINE IMSUM(XW.X • U * l))/2; (2) 
GLOBAL               NUM,SUMj (3) 

SUM«- (4) 
CASE (.NUM GTR OJ 0^ (5) 

SET (5) 
•ffnUMt-ilAQi (7) 
INTSUM(.NUM) (8) 

TES (9) 
)ELUDOM (10) 

Figure 9.1  - A Short Prograr»! in Bliss Language 

It computes the sum of the Integers in the delusive interval from the number in location 

NUM to 0. 

Line (2) specifies calculation of the sum by a method which is valid for positive 

numbers. The occurrences of "." in the program all denote taking the content of the 

memory location named by the variable which follows. 

Line (4) specifies that the value of the following expression shall be stored in 

variable "SUM". The case expression in lines (5) to (9) oerforms one of two 

computations. Choice of which computation to use is made in (he expression (.num gtr 

0) in line (5), which tests the value of variable "NUM." If the value is positive, the value 

of the expression is 1, and 0 otherwise. For the expression value of 0, case 0 is 

computed (line (7)). For the expression value of 1, case 1 (line (8)) is computed. The 

result of the chosen computation is stored in "SUKT Lines (1) and (10) define the 

boundaries of the program. 

The Bliss compiler translates the program to POP-10 assembly coca, also producing 

• listing of the result. Figure 9.2 . 

. . _. 



9-   4 

00100 00 Jl MODULE XX4 
00200 0002 ROUTINE INTSUM(XMJ( • (X * l))/2i 

0000 J3P 12,ENT.O (ID 
0003 0001 MOVE tV,-2(ft--) (12) 

0002 WDVE 04,3 
0003 AOJ 04,0 
oooa MX. 04,3 
0005 ASH 04,-1 
0006 KAOVE «V,4 
0007 JRST «S.EXT.0 (18) 

00300 0003 GLOBAL NUM,SUM; 
00400 0004 SUM<- 
00500 0005 CASE (.MUM GTR 0) OF 
00600 0006 SET 
00700 0007 -INTSUWWJUM)} 
00800 0010 INTSUM(.NUM) 
00900 0011 TES 
01000 0012 )ELLIDOM 

0004 0000 h,'OVEI 05,1         (19) 
0001 SKIPG O^XX-G+O 
0002 SETZ 05,0 
0003 XCT fc3,L1404(05) 
0004 JRST 13,L1S52 
0005 L1404: JRST i3,L1366 
0006 JRST 13,L1370 (115) 

0007 0007 L1366: K/.OVN 06,XX.G*0 
0010 PUSH IM 
0011 FUSKI C3,INTSUM 
0012 SU3 13,[000001B000001] 

00 i0 0013 MOW fcV,3        (120) 
0014 JRST 63,L1352 

0011 0015 L1370! PUSH C3,4 
0016 FUSHJ CSJNTSUM 
0017 SU3 C3,[000001„000001] 

0012 0020 L1352: MOVEM W.XX.G+1 (125) 
0013 0021 CALU $S,12       (126) 

FIGURE 9.2 -   Compiler Output 

■ J 



-y—^mmmmmmmmmm         ^ TrJSUT" . 

9-   5 

The notation is generally that of PDP-10 machine language, MACRO-10. Line (15), 

for example, is an instruction to mteger-mult;. / the content of address 4 with the 

content of ad^.ess 3. 

Each instruction has several fields which are treated separately in its interpretation. 

Th&se of particular interest here: 

1. The operation code field (Opcode), which selects the symbolic 
operation to be performed. 

2. The address field, which names an address in memory relevant 
to the operation. 

The address field is used in different ways under different opcodes. 

CONVERTING TO GRAPH REPRESENTATION OF THE PROBLEM 

In order to represent the salient information about instructions we give the Slate 

system definitions for the following relations: 

precedes 
is the opcode of 
is the address in 
appears before 

We define the following to be constants in the system: 

  -  --■--■-       -  ^ .      .,   , ■■■      ,-—   .^.^.*.~^    i i   II iiaiiiaifcii MHiw^tfilMtfi 



9-   6 

XCT PUSH PUSHJ JSP 
POPJ J^ST CAME AOS 
AOJ SETOM SETZ ADD 
MOVEM U)VNI K/OVEI MOVE 
CALLI sue SKIPGE SKIPG 
MJL SETO AOJA ADD3 
MOVN 
CAMLE 

ASH 
CAILE 

DPa ADDI 

All of the constants above are opcode namos. 

We establish the convention that every instruction and every item which appears on 

an address field will be represented by a token. Most of the tokens which we use will 

have three-letter namos, since such token? can be generated automatically in the Slate 

system.   The names are arbitrary, but hopefully pronounceable.   • 

We could represent the instruction on line (i5) of Figure 9.2 by the graph in Figure 

9.3. 

In Figure 9.3, RIH la the tokon represontiij tho instruction. NEJ, JER and DAD are 

also tokens. All of thoso tokons ropresont locations in memory used by the program 

being representod. 

The graph reprosonting the machine code shown in Figure 9.2 is developed 

systematically in two steps. First, a copy of the compiler listing is prepared which has 

every instruction libeled with a token ncme and a tokon name for every other memory 

* In figures, tokens which are not ncmed in the text are often represented by ♦ signs. 
Vertical unlabeled arcs represent the "precedes" relation. Converse names ere used 
freely. 

■ ■ - tMMMMMHMMMM 



9-6 A 

JER 

precedes 

is the address in                 ',,                  is the opcode of 
NEJ ►   RiH  ^ ■  IMUL 

precedes 

DAD 

Figure 9.3 - One Instruction Graph 

■-■  II    I    !■ ffl ^— ..-■■.. .        . ~    -      ■■ ■-■     - --  ■■      -    mwmm—mm 



111 

9-   7 

location, at illustrated in Figure 9.4 

00100 0001 MODULE MA 
00200 0002 ROUTINE iNTSUM00-(.X • {* * l))/2; 
GEM 0000 JSP l^HAW 
WAJ 0003 0001 MM 8VP< 
nEK 00C2 N/OVE OA.NEJ 
JER 0003 AOJ 04,PIK 
RIH 0004 WUL 04,KEJ 
DAD 0005 ASH 04,TIR 
FAF 0006 MOVE DV,E,0H 
LOL 0007 JRST «S^XITLOC 
00300 0003 GLOBAL NUmUM 
00400 0004 SUM 
00500 0005 CASE (MM GTR 0) OF 
00600 0006 SET 
00700 0007 -INTSUM-.NU;v(); 
00800 0010 INTSUMCNUM) 
00900 0011 TES 
01000 0012 ) ELUDOM 
BIB 0004 0000 t.:ov£i 05,1 
KIT 0001 SKIPG 04,NUM 
WEV 0002 ScTZ Gj,Pli< 
BAG 0003 XCT >=3,KlfyX05) 
VIS 0004 JRST I8.UCB 
KIN 0005 KIN: JRST UßBM 
SAP 0006 JRST CS,TlO 
BEW 0007 0007 ■M MOVN 06,NUM 
JOM 0010 PUSH €S,6 
GIJ 0011 PU3HJ CS.INrSUM 
NOK 0012 oua CS.W0P 
JOR 0010 0013 K/OVN tV,NEJ 
KAH 0014 J-^ST CS.WEB 
TID 0011 0015 TID: PUSH CS.GOH 
MIF 0016 PU3HJ C3.INTSUM 
BEL 0017 SUJ NiMOP 
WEB 0012 0020 WEB: k'OVEM W,GUM 
MET 0013 0021 CALL! (3,12 

Figure 9.4 - Compiler Output with Tokens 

«MMMHMMHMi 



r* 
m 

Kwu-mmao ■«■^■'«-  '■■ i 

9-   8 

The seventh line of the figure Is the instruction described above. 

In order to complete the representation of the program we need to define the 

relations to be used In the graph. For each relation name, we need to Know all of the 

subgraphs which are to be treated as unacceptable. 

The result of this process, which is described in detail in Chapter 12, is that 

"precedes" is defined as a total-order relation, "contains address" and "contains opcode" 

are defined as single-valued so that entities may contain only one opcode or address, 

and "appears before" is defined as a transitive partial order relation. 

T.iit completes the definitions necessary to represent the program. The resulting 

graph is shown in Figure 93 . 

Figure 9.5 represents the sequence, address and opcode aspects of the program. 

We shall see that for purposes of control structure attribution, the other parts of the 

PDP-10 instruction are redundant, although they are vital to computation.* 

• Those parts are the index register and accumulator fieids and the indirect bit. We cen 
'iurely formulate descriptive tasks based on machine code for which these values would 
be required, however we know of no reason that a straightforward reuse of the style 
described below would not serve such tasks as we<l 

Ma^a^**MMM MMM^M 



wmmmmm^ 

9- 9 

rr 
HRU < contain!—addross 

X    < contains- 

▼ NEJ < contains 

•}PIK < contains- 

— . contains- 

TIR < contain» 

-^ BOH < contalns- 

EX1TL0C < contains- 

LED < contams- 

NUn < contalns- 

,-..■ a-—conta ins- 

contains- 

 cont«ins- 

addruss 

-address 

-addrass 

-addrass 

-addrass 

-addrass 

addrass- 

addrass- 

■addrass 

-Addrass- 

-addrass- 

-address 

—-contains- 

•—contains- 

■addrass- 

-address- 

CEfl 
'i. 
— uaj 

i 
— REK 

i 
■—  JER 

i 
— RIH 

4 
— ono 

i 
— FRF 

I 
— LOL 

i 
— BIB 

4 
ru 

i 
— UEV 

4 
— BRC 

4 
— VIS 

-? KIN 

-contains 

TEF < contaIns- 

contalns- 

nOP < contalns- 

 conta ine- 

■i    icontalns- 

—address- 

■addrass— 

•address— 

-addreas- 

-addrass- 

-address- 

- SRP 

— BEU 

I 
.- jon 

4 
- CIJ 

4 
■ ■  NOK 

4 
-- JOR 

4 
— KRH 

—contains—address TID 
4 

 con ta i n«—address H IF 

—conta Ins—cddrooB BEL 

SUri  < contain«—address—- UEB 
-i 

SflL  < contain»—addrass MET 

Figure  9.5  - Program Represented 

—has—opcode—> JSP 

■—has—opcode > HOVE 

■—hjs—opcode > HOVE 

—has—opcoda > ROJ 

—has—opcoda >  IHUL 

—has—opcoda > RSH 

—has—opcoda—> flOVE 

—has—opcoda > JRST 

—has—opcode—> nOVEI 

—has—opcoda—> SKIPC 

—has—opcoda—> SETZ 

—haa—opcode > XCT 

—has—opcoda—> JRST 

—has—opcode—> JRST 

—has—opcoda—> JRST 

 has—opcoda > HOVN 

...has—opcoda—> PUSH 

—has—opcoda—> PUSHJ 

—ha*--opcode—-> SUB 

 has—opcoda > tlOVN 

—has—opcoda—> JRST 

—has—opcoda—> PUSH 

—has—opcoda—> PUSHJ 

 has—opcoda—> SUB 

 has—opcode—> HOVEd 

 has—opcode > CRLLI 

as a Graph. 

- ■ ■  —-^—^i— '■ --- -- -■ ■   ..■-.. 



»imm>    im* m]Hm\im mim . wt 
T 

9- 10 

REPRESENTATION OF THE KNOWLEDGE OF ROUTINES 

This section presents the definition process for the knowledge of Bliss-produced 

machine code. 

These assertions constitute the general Knowledge of routines for our purposes. 

In order to define the Knowledge of the system, the following additional relations are 

d*fin«d. 

is the value of 
is the content of 
is the function of 
starts with 
finishes with 
has subpart 

Table 9.1 -   Relations Used in Knowledge graphs 

The following constants are defined for this tasK and later related tasks. 

CASE HEAD CASE SECTION VREG 
DISTRIBUTOR COLLECTOR CASE STATEMENT 
CASE EXIT ROUTINE NAME EXITLOC 
LOOP EXPR TAIL 
TEST TEST SETUP INCREMENT SETUP 
El E2 E3 
SELECTION TEST SELECT STATEMENT SELECTION VALUE 
SETUP SELECT CONTROL SELECT TESN 
VREG PARAMETER SET 

CALL SEQUENCE 
ROUTINE   CALL 

There are configurations of instructions which Occur somewhere in the machine code 

for every routine, routine cill and parameter citation in the source program.   Routines 

—   -- —— MMMB^^H^MUfl« 



nm^Fm^mm^^m^m^m^^^mi^ ww^p^iw^^«p»-wF-^^n»w^^w*"i^rww»"—^p«»" 

9- 11 

always start with an instruction having opcode JSP, and end with an instruction having 

opcode JRST with one of a few particular locations in their address field. Such e 

location is called EXITLOC here. The JSP executes before the JRST. The routine name 

used by the rest of the program is the name of the JSP instru-tion. 

The above assertions are represented by the graph in Figure 9.6 .   RT1, RT2 AND 

RT3 are tokens. 

ROLFINE NAME ^■ 

RT3 

functions as 

functions as 

V 
ROUTINE 

„-..    ^. '« *he opcode of 
RT1   -3 ~ JSP 

executes before 

is the opcode of 
JRST 

is the address in 

EXITLOC 

Figure 9.6 - Chunk For Identifying; the Code of a Routine 

—            ■' - -      -—-—"■-■■ j--^,^^    ■^j^^^j,,,--^^^ , 



■w  .:.,-,™, "■'■■" ■   ... 

9- 12 

The sat of ires in figure 9.6 is used as one chunk in performing this assimilation 

task.    There  are  several things that we should note  about this chunk.    First, it 

corresponds to part of the graph which w^ have at hand (in Figure 9.5).   If we were to 

substitute GEM for RT1 and LOL for RT2 in the chunk, then three of the resulting arcs: 

JSP is the opcode of GEM 
JRST is the opcode of LOL 
EXITLOC is the address in La 

would be identical to arcs of the input graph. 

Second, the arcs of the chunk which result from that particular substitution could be 

added to tht input graph without creating any conflict. This means that the knowledge 

of a Routine and the input assertions about GEM and LOL are fully consistent. 

Third, there is no instruction other than GEM in the input graph for which such a 

non-contradictory substitution could be made for RT1. Therefore, for GEM, the opcode 

must be JSP. For any other instruction, say WAJ, the substitution would result in a 

subgraph such aa Figure 9.7 . 

JSp is the opcode of      is the opcode of 
JSP ►WAJ  ^ —^  MOVE 

Figure 9.7 - Opcode Conflict 

This subgraph is defined to be contradictory, violating the definitional constraints on 

"is the epeodt of," which make it single-valued. 



'    ■"' ' ll^U    ^^^^W        ■«■■Bl! «■■!■       ■. I^B^^P^       M   ■■ ^W^^^^a^W^WII   I    I   ■    ■      W^^^^P^^^^ 

9- 13 

There Is ■ third token In the churk, RT3, which represents the entire routine.   There 

Is no token in the program graph (Figure 9.5) which corresponds to it.   In order to have 

ere« In an extension of the input graph which correspond to these arcs: 

RT3 starts with RT1 
RT3 finishes with RT2 
RT3 functions as ROUTINE, 

• new entity must be posited in the input graph.   Assertions about this entity can be 

used in further extending the knowledge of the input. 

USING THE KNOWLEDGE OF THE INPUT 

Figure 9.8 shows the result of mapping the chunk into the input graph. 

By adding the vertex representing the routine to the graph, we are abstrecting on 

the input. The Slate system treats the new abstract ontity In the same way that the 

Input graph Is treated, so that the process of abstraction is not limited to the input 

graph per se. 

The mapping of this chunk onto the input graph adds five new arcs to the graph. 

Two of them are assertions about the functions of parts, two are declaring the 

substructure of the routine, and one asserts an order relation about the execution paths 

through the routine. Of these three kinds, the ones which declare functions «re the 

most useful for further abstraction. 

- ■■ ■           - -        .. .. —-~— 



ITTü-T an 
■WIllPll 

9- 14 

ROUTINE   NBflC- -i«   th«   funct ion  o« 4X -•xacutas  aft«r. 

HfiU < contains—adaraas- ^ GEH -ha«—opcode >  JSP 

X        < contains—addraat--- URJ  —haa—opcoda-—> HOVE 

»NEJ  *—con,a,n«—•<«dr«»»— "EIC  —has—opcoda—> tlOVE 

^PIK   < —-containe--addr«as —-  JER  —has—opcoda—> ROJ 
i 

—     containa—addraaa— RIH  —has—opcoda—>  IflUL 
i 

TIR   <   --containa—addraae ORD   —haa—opcoda—> RSH 
l 

♦ BOH  < contain«—addrasa— FRF haa—opcoda > HOVE 
^—finishas  M i th m   ■      —^  •\l    /- 

EXITLOC  <—contains—addraaa— LOL —has—opcoda—> JRST 

l 
LED  < contains—addraaa BIB —has—opcoda—> flOVEI 

i 
~^NUn  < containa—addrasa KIT has—opcoda > SKIPC 

i 
*-—contains—addraaa UEV nas—opcoda—> SETZ 

1 
 containa—adJraas BRC haa—opcoda > XCT 

i 
 contain«—addrass VIS —has—opcoda—> JRST 

---containa—addraaa KIN has—opcoda > JRST 

cont«i ns—addrass SRP has—opcoda > JRST 
 >,i ' 
iirta *f4Mr*mmm UTU kk.Mm ^..^M.^. ■.     MAV/L  containa—addraas BEU has—opcoda > HOVN 

TEF   < contains—addrass JOfl has—opcoda > PUSH 
i 

—containa—addrass CIJ has—opcoda—> PUSHJ 
i 

HOP  < containa—addrass NOK has—opcoda—> SUB 
4 

containa—addrass JOR has—opcoda > HOVN 
i 

contains—addrass KRH has—opcoda—> JRST 

PUSH 
 * 
-contains—addraas TID —has—opcoda—> 

4 
—containa—addraas HIF has—opcoda > PUSHJ 

i 
—containa—addraaa BEL —naa—opcqda—> SUB 

1  ^ 
SUn  < containa—addraas—^ UEB haa—opcoda—> nOVEfl 

i 
SRL  < containa—addraaa HET haa—opcoda—> CRLLI 

Figure  9.8   -  The Slate After flapping Une Chunk 

- ■  



wvm*—**'^*!^** 

9- 15 

There are three other chunks ueed to represent the knowledge of routines end calls 

on routines.   They are shown in figures 9.9, 9.10, and 9.11 . 

When the Slate system uses these three chunks on the input graph, they map in In 

the order- 

ROUTINE CODE 
ROUTINE CALL 
PARAMETER SET 

although the chunks are not ordered in storage. This particular order arises from the 

fact that each of these chunks builds on U» assertions deposited by the previous one. 

The chunk for routine code deposits an arc 

GEM functions as >ROUTINE NAME 

The chunk for routine calls maps arc 

RC2  functions as >ROUTINE NAME 

onto this arc.   It in turn deposits an arc 

QU  functions as > CALL 

The PARAMETER SET chunk maps arc 

PC2  functions as >CALL 

onto this arc. Each of these deposited arcs is treated as evidence for mapping in the 

succeeding chunk. In this particular soquonco, the evidence is decisive at each step. 

By thia we mean that if the arc In question is removed, the Slate system will find no 

further mappings which qualify according to Its rules of evidence. 

The graph which results after these throe chunks map in is shown in Figure 9.12 . 

At the point shown in the figure, the ROUTINE CODE chunk has mapped in once, the 

  



9- 16 

ROUTINE CALL CHUNK 

functions as 

CALL SEQUENCE 

functions as I 
finishes with 

has opcode 

CALL   «■ 
-^ PUSHJ 

functions as 

ROUTINE NAME • + 

is the address in 

Figure 9.9 - Chunk for Routine Call 

PARAMETER SET CHUNK 

is the function of 
PARAMETER SET 

» + 
,s the opcode of      p\j$H 

functions as      ^ 
CALL SEQUENCE ♦ ' + * 

CALL 

precedes 

Figure 9.10 - Chunk for (Optional) Parameter Group of Routine 

—— — -   ■ - - - -       — ■ ■ 



^pwP»!wwi«|wr»<^^-^^^p-^^«ÄP^BPP 

9- 17 

ADDITIONAL PARAMETER CHUNK 

it the function of 
-► + 

CALL is the 

SEQUENCE   function of      ^s 
precedes 

PARAMETER SET 

is the function of 
-*   + 

PUSH 

Figure 9.11 - Chunk for (Optional) Muitipte-Par^.-neter Calls 

ROUTINE CALL and PARAMETER SET chunks twice each (once each on each of the two 

places where routine calls occur.) 

We not« that all of the uses of routines and routine parameters and the boundaries 

of the routine have all been correctly identified. 



■ ■I   1   ■  - «■ - 

ROUTINE ROUTINE  NAHE- 

9-18 

•!■   tha  funct Ion of 

^X -•x«cutai   aftar- 

H3U   < contain»—jJdroa»-^ CEtl ha«—opcoda > JSP 
Vi 

-ha»—opcoda—> HOVE < contains—addrvas URJ 
I 

contain!—address REK has—opcoda—> HOVE 
1 

)PIK < contains—addrass JER has—opcoda—> ROJ 
i 

 contains—addrass R1H has—opcoda > IHUL 
i 

TIR   < contains—addraas DRO haa—opcoda , fibn 
i 

♦ BOH  < contains—addrass FUF has-.-opcoda > HOVE 
—flnlshas  with ^ ^    ^ 

EXITLOC   < contains—addrass LOL has—opcoda > JRST 

4 
LEO <—contains—addraas— BIB —has—opcoda—> flOVEI 

i 
—>Nun  < contains—addros« KIT has—opcoda—> SKIPC 

*-—cont«'ns—address UEV has—opcoda—> SETZ 
i 

contains—addrass BOG haa—opcoda—> XCT 
i 

contains—addrass VIS has—opcoda—> JRST 

contains—addrass KIN has—opcoda—> JRST 
i 

-»contains—addrass SAP has—opcoda—>  JRST 

 *i 
contains—addrass BEU has—opcoda—> flOVN 

hos subpart I 

TEF  < contains—addrass——JOn haa—opcoda—•  /USH 

-fimshos  with >>. 
-has—opcoda > PUSHJ coniains—aaorass- J||J 

h—Is   tha  function of—J   Pi 

CALL —Is  tha  function of—I '   

MOP  < contains—addrass NOK —has—opcoda—> SUB 
^ i 

—contains—addrass JOR -—has—opcoda—> flOVN 
4 

contains—address KRH —has—opcoda—> JRST 

contains—addraas—-^T10 —hat—opcoda—> PUSH 

•—contains—addrass HIF —has—opcoda—> PUSHJ 

-con t n l nn —addrowo BEL has—opcoda—> SUB 

SUM < contains—addrssB--? UEB —has—opcoda—> noVEH 
i 

SPL  < con tains--addrass NET has—opcoda—> CALL I 

Figure 9.12  - Program Graph After Mapping  the Chunks  for Routines 

M  - '  --    -   -   .^^M^MM ^M^MM^^MM^^M MAMMMHMflU 



mm 

9- 19 

REPRESENTATION OF THE KNOWLEDGE OF CASE STATEMENTS 

We now go on (more briefly) to treat the knowledge of case statements and the use 

of that Knowledge in this example. The style is very similar to that used for routine«. 

Therf are three chunks used to represent the required knowledge. They iro shown In 

Figures 9.13 to 9.15 . 

The syntax of I case statement allows any number of sections. We expect the 

chunk for case head (for the beginning of the statement) to map in once, and the chunk 

for case section to mop In once for each section actually present. The case statement 

chunk also maps in several times, once for each section which the statement includes. 

The new portion of the result graph, after the case head chunk maps In once and 

the other two each mop in twice, is shown in Figure 9.15 .• 

• The graph shown in Figure 9.16 is the rosult of a hand-simulated complet.on which 
was performed aftor computer runs wero complete. The method presented so fans 
defective in that the lost case section, which does not end with a JRST instruction but 
rather with an instruction which directly precedes the cose exit, cannot be recognized 
by the CASE SECTION chunk above, which requires the JRST. We fix this by adding a 
FINAL CASE SECTION chunk, which can perform the correct recognition of such sections. 
This chunk must match the last distributor, which is the only distributor directly 
preceding a section beginning.   Construction of the chunk is straightforward. 

The notion of tha "oppoars bofore" relation In those chunks is that it is the 
transitive closure of -precedes," and we could hove defined it so by an interaction 
definition. However it was much more efficiont tr prestore it only where it was needed 

instead. 

_,.  ■ -■-        .- --     '—- 



  " "" m  ■    ■ '■   "  ■■ — 

9- 20 

CASE HEAD CHUNK 

CASE HEAD o- 

functions as 

functions n 

r 
CASE STATEMENT 

CASE EXIT 

t 

is tho opcode of 
»*>  XCT 

precedes 

"       is the address in    »        / 

CASE SECTION 

DISTRI3UT0R      «> 

Figure 9.13 - Case Hoad Chunk 

^M ^^.i^.-.         -   —     ■        ^.■.-..J._-.. 
-       ■ —    ■■ —     



W^^^r"i   ■'I' imi^^w^mmm m*m*mi «   ■ i i 

9-21 

CASE SECTION CHUNK 

DISTRIBUTOR 
functions as 

CASE SECTION  ^■ 
'JRST 

is the address in 

CASE EXIT Q 

Figure 9.14 - Case Section Chunk 

~. _-.. -x   .^ ^.u    ■■■..■^■■iiiifii     -  ■ —^ 



mW   ii   \*mut « J  "'      i^^^j^^m ^•a    lai ■■-«■•.      IM wwmß      ipp«iilltl|l I 

9- 22 

CASE HEAD V- 

CASE STATEMENT CHUNK 

functions as 

CASE STATEMENT O 
functions bs 

CASE SECTION v> 
functions cs 

CASE EXIT O 
functions cs 

CS5 

finishes with 

Figure 9.15 - Chunk for Gross Structure of a Case Statomont 

  - -     -■        - -    - .^^^^^^^a^,—^f.  -  ^^^^^t^^^ 



mm    •• u '" 

9- 23 

CASE  HEAD is  the  function of —BAG 

CASE  SFCTION /• *ö iar ts 

"*// 
f/)Q 

'o. mth- 
"^Z ,-8tarte 

/    y flnit 

CASE  STATEMENT 

*      *S *      /p 

8he8^'th-^ KAM 

// 

/    4 
f> COLLECTOR 

1—is   the  function of—HER 
i j 
1—is  the  function of— 

Vs. DISTRIBUTOR 

i s the function of- 

'—ie the function of— 

\  '^j   L-is the function of—SAP 

\ a'-CV te ■" ^ 
-s ^KIH  . 

'n/ e^ee •"th^ BEL 

! 

• 

i 

a/7« 

CASE  EXIT is  the  function of "-UEB 

Figure 9.IS - Final  Additions to Slate Content 

■■'---^■' —-" ^-.-.^-^.^ ^. -  —■ .—^-..-.^^-i^^^^— 
""■ - ■      ■■- -    ■ - ■        -    - — '—~~~~~~*~ 



I 
I IIMIIII|IIIII«II 

  

9-24 

We can now judge figures 9.12 and 9.16 above, which together display the problem 

solution, against the Initial criteria. 

1. All control structures presant have been identified correctly 
by means of new vertices repressnting the structures as a whole, and 
by arcs on the relstion "functions as" indicating the particular 
structure identified. 

2. The scopes of all control structures ere correctly Identified by 
arcs on relations "starts with" and "finishes with." 

3. Mutual reference or romina cells is indicated by correctly 
identifying the call sites in arcs of the form ( XX functions as ROJTINZ 
CALL), where XX is any vertex. 

4. Control structures not found in the source program were not 
attributed to the machine code. 

5. Substructure of sll control structures is correctly Indicated by 
arcs on relation "functions a«." 

6. Since the solution is a graph v hich includes the input graph, 
the added arcs and Input graph are self consistent and mutually 
consistent. 

In summary, the goals for this example have boon compbtoly achieved. 

OTHER PROGRAMS 

The integer :\., program is one of sbout a dozon programs which have been used in 

the control-structure discovery tssK. Some small programs were used to develop the 

ability to deal with single control structures. Several other composite examples were 

used as well, iirluding the one In Figure 9.17 below. 

■   ■ - -   ■        - - -J 



11 "■" • '■' 

^ 

9-25 

This program hat 54 instructions when compiled, and yields a graph having 168 arcs 

before chunking and about 250 arcs after chunking 

The fact that the presence of some of these chunks does not interfere with the use 

of others was established both by the compositd examples and by the general practise 

of having all of the chunKs for the task in place whenever any of the chunks were being 

MODULE MYTIME(MLIST)- 
BEGIN 
GLOBAL A.B.C.D.E.F.G; 
LOCAL M.N.P.Q; 
ROUTINE GF(T,U)-QT2*Uj 

INCR X FROM .A TO .B BY .0 DO 
BEGIN 

NSET 
SELECT .D OF 

SET 

TES 
TESN 
END 
END 
ELUDOM 

INCR Y FROM 2 TO 7 DO 
M   .M-.£i 

.P: CASE .F OF 

GF(D,4); 
Q.P; 
P.Q 

Figure 9.17 - Another Bliss Program 

■   ■■ ■  -—- —■  ■   



^»—i—^^ -«-^_. 

9-26 

tested.   (Th« tarn» prtctit» was followed on ill tasks, with the same result.) 

One very large program was attempted. It was designed to have enough control 

structure so that every chunk would map into the Slate at least twice. Some therefore 

necessarily had to map in offener. The effort was abandoned because of its cost in 

computer resourcos. However, examination of partial states of completion indicated that 

progress was satisfactory and that no qualitatively new problems were affecting the 

course of events. 

INTERPRETING THE RESULT GRAPH 

In finishing tho example of tha intcsor sum program, we have left to the reader one 

vital step In the solution of the original problem. We have not transformed the result 

graph Into any other notation bafore evaluating it. Rather we have found the assertions 

of function and Inclusion of ths result to ba correct "by inspection." 

This direct Interpretation has boon possiblj because the arcs can be read like 

sentences. The language of relational triples is rot English, but it is like English in 

important ways. In this example we can «oe that we can read the result graph as a set 

of sentences, with the tacit understanding that the token names are like proper names 

or place holders. For example, the arc JSP is the opcode of GEM is a relational triple 

which resulted from the mapping of the chunk for Identifying routine code above. 

Reading It as a sentence, we understand that GEM is the name of a particular instruction, 

and that JSP la the unique opcode of that instruction.   The uniqueness of the opcode 

,. -..^.■,■,.. ^_.... .  -   -   ■ -    -^IflM  — 



M^M^r-^*««HMipiPI**n<M<mHW«^M^Hnwr'"WM  «i '■     ■•-.(.«■■       m»     w.» ■«•Uiii l H   ^ i  ■■•  J   MI ■ ■■nPMP«.! IM^II-J   •■«•"•^■'   i>    •■ '  ■       ■•' 

9-27 

value I« suggested by "the" in the relation name, and is enforced by the relation 

definition for the relation name "is the opcode of.' 

The results of such reading are not deceiving. They accurately represent the 

results which the system has derived The uso of the right relation definitions has 

allowed the system to keep its triples in correspondence of meaning with the English 

sentences which they form. 

In developing the Slate system, the fact that the sets of triples derived could be 

read off easily in English was a strong aid in understanding what was goi ig on. The 

triples-language acts as a convenient meeting ground between the formal operations of 

the program and my own informal operations. 

Achieving a correspondence between triples and sentences clearly depends strongly 

on being able to define relations having the right properties. The system of inferences 

and constraints must enforce the meaning imputed by the name. Each relation name is a 

phrase which must fit properly in infix position. The class of relations which we used is 

adequate for a wide variety of tasks, as the remainder of the thesis illustrates. 

Sometimes the requirement that every relation have a name for both the relation and its 

converse has led to an unwieldy converse name, but at least one convenient name for a 

relation has always been easy to find. 

Watt has discussed a common problem which he calls the "habitability" problem, 

which arises with computational systems which accept natural language input from 

people.[W68] Since the present art cannot deal with unrestricted natural language input, 

■   -—   — -■ ■  - 



9-28 

MCh .y.t.m Kept« only it» preferred subset of the lenguege. The principles of 

subsetting which .re used turn out to be extremely difficult for people to ecquire end 

use.   Thus the subsets are not "habitabio" for poople. 

We heve finessed the h.bit.bility problem for the Slate system graphs, bec.us, 

p.ople understand them a. a formalism, but with sentental semantics. Since each arc 

can bo raid as a sentence, and since the constraints on joint occurrence of arcs 

correspond to the .xpectations for joint truth of the corresponding sentences, people 

have little difficulty in understanding or remaining within the formalism. The REL family 

of languages takes major advantage of this correspondence.   [BGST73] 

Th. difficultie. .rise from inability to express soma ideas in the formalism; these .r» 

recognized and so do not lead to Improper system input when graphs are being built. 

■ - ■    -- ■ - .» - - - 



COMPLETING CONTROL STRUCTURE DESCRIPTIONS 

CHAPTER 10-t 

PROBLEM PRESENTATION 

This section presents another task defined on the same subject matter, program 

structure. Its purpose is to demonstrate an aspect of the diversity of kinds of problems 

which the Slate system can handle. In the previous chapter, chunks were applied to 

detailed knowledge of code in order to impute knowledge of source-language constructs. 

In this chapter we do the opposite, applying the same chunks to knowledge of 

source-language constructs In order to impute knowledge of machi.ie code, according to 

the criteria stated below.   We want to show that the same chunks work either way. 

It often happens that information to bo assimilated includes some abstract knowledge 

as well as (or instead of) elementary detail, whilo tho prodem-solver requires both 

kinds of knowledge. If the structure of the assimilator is such that it simply recognizes 

structure in detail, then the abstract knowledje cannot bo assimilated, even though the 

relevant knowledge is in memory. For example, discrimination-net representation of 

knowledge involves a commitment to only one of these two kinds of imputation. (See 

chapters 6 and 18.) 

The problems in this chapter are problems of assimilating abstract program control 

structure descriptions. They are synthetic demonstrations, in that we do not identify 

them with the context In which this problem arises. 



. 

10-   2 

EXTERNAL PROBLEM REPRESENTATION: English language 
statements describe a particuldr pro^rüm by naming its control 
structures. 

INTERNAL PROBLEM KtPRESENTATION: A graph contains vertices 
which correspond to the control structures named, »heir subparts if 
they are specified, and the relations between them. 

SOLUTION REPRESENTATION: The problem graph is augmented with 
vertices and arcs which describa tha additional control structures 
whicn necessarily accompany those mentioned and the machine code 
which must be present to implement the control structures. 

CRITERIA FOR JUDGING SOLUTION: 

1. Any machine code known to be necessary to 
the given control structures must be attributed to 
them. 

2. The boginninj and end of thj scope of each 
control structure must be correctly icentified. 

3. Any control structure not required by the 
given statements must not be posited. 

4. All of the cisortions of tha solution must bj 
mutually consistent and consistent with the 
assertions of the problem ropresentatioa 

The first exemple is that of a select statement having three sections. The external 

representation of the given information might bo: "A certain Bliss select statement has 

three select sections." We present the Slate system with the ten-arc graph in Figure 

10.1. 

The knowledge of program structures is all the same knowledge that was used in the 

previous task.   The same chunks are usod to represent it. 



10-3 

__               functions as  . 
SELECT       g ZS-, 

STATEMENT ^ 

exocutos otter 

functions as      ^CFI FrTinN TEST 

executes after 

Fl3ure 10.1 - Three Section Select Statement 

One go.1 of this ex-mplo is to damonstrato that the Knowledge itself is not 

fsK-specific. Rather it can be used in a variety of tasKs which involve the sublet of 

the knowledge. 

An..h.r ,«, o. ft. mm* r. to d,,mon3tra.a IM ft. M-mto*. imorpreftlon 

„h.™, which «. » «inj h. M l.h.,tn. co^it^n. to .bstr^on. completion or 

efborotioa It ope-oto. .«octivol, on ,n, ot tho*>, mi «n b. oKpectel to handl. 

mixtures as well. 

- — 



10-   4 

PROBLEM RESULT GRAPH 

Th« mapping sequence which occurs Is as follows: The sequence of mapped chunks 

it: three mappings of the SELECT STATEMENT chunK, the TESN chunk, the SETUh SELECT 

chunk end three mappings of the SELECT SECTION chunk. The final state at which no 

more acceptable mappings can be found is shown in Figure 10.2 •• 

It is Interesting to note what is mUsing from the graph. Tha knowledge of the order 

of the sections was provided, and has been completed However, there have been no 

interactions between 'executes after" and -precedes," so the result has less explicit 

sequence Information than it could. 

The knowledge that was available has been fully applied by the system. There are 

no further assertions which are resident in the chunks that could be applied to the final 

graph. The missing parts of the statement (head section and exit section) have been 

supplied, and the two select sections that were mentioned In the Input have been fully 

elaborated in the result graph. 

We can compare the result to our original criter.a: 

I.   All machine code known to be necessary has been properly 

attributed. 

V'iör al^llcit* the complete transitive closure of the "executes after" relation has not 

been shown, although it Is maintained 

 ------     —  ... ^^^—^  -~« „.-. _- _   . . , — „ ,      .        .   .> 



1 -w^W^W " - '  ^ -  - .- - . .^. - .- . . —— ^^»^^•^BWIPPW^ 

10-5 

SETUP SELECT -•- .funct ions ai contain«  opcod«-»-SETOM 

precede« 

SELECTION VBLUE-^-funct ient as   FEV    -^-contamt addrsig+i-   TIT     •contain! opcode 

SELECTION TEST-*—«ynctiont a» 

TESN-M- 

SELECT STfiTEnENT-»funcliont a«-\- ZS4 

CONTROL SELECT-^-«unction» »* 

-funct ioni at- NIV 

SKIPCE 

.contains opcode^-». SETO 

Figure 10.2 - Result of Explicating a Three-section Select Statement 

 , -■. __  —■— - -    - ' 



-ZT" ■^^•^m^mrmm** 

10-   6 

2. The scopes of the given control structures in the machine code 
hive been or -rectly delimiUd by "starts with" and "finishes with" arcs. 

3. No control structures not present have been attributed. 

4. All assertions are consistent as before. 

In summary, the system has been completely successful in elaborating the input 

graph on the basis of its knowledge. 

The sections below present solutions of additional examples of the same kind of 

problem. 

EXPLICATION OF A CASE STATEMENT 

This example is analogous to the previous one. except using chunks for the Bliss 

case statement. The external reprosonta.on of the problem * "A certain Bliss select 

statement has three sections." The graph g.ven to the system is shown in Figure 10.3. 

CASE STATEMENT maps in twice, then CASE HEAD 

SECTION maps in twice. 

maps in once, and finally CASE 

The result is a large graph wh.ch is qualitat,voly comparable to that of Figure 10.2 . 

In evaluating with the four cnteria, wo have the same completely successful result as on 

the previous example. Since section order and adjacency were not given or inherent in 

the chunks, they are unspecified in the result. 

-   ■ —     -  



 ■ 

10-    7 

functions as 
CASE SECTION    <»- 

functions as 
CASE STATEMENTO    2S1 

functions QS 

ZS2 

Figure 10.3 - Input Graph Describing a Two-section Case Statement 

EXPLICATION OF THE INTEGER SUM PROGRAM 

This example corresponds to the first assimilation problem of chapter 9. The 

external statement is "A certain Bliss program contains a case statement which has two 

ca e sections and a routine which is called by two one-parameter calls." The 

corresponding internal statement is the graph shown in Figure 10.4 . Note that the 

graph is not connected. 

■  ■ 



^w "»•—«»^^1 ——.—-. 
mimtm**m*iimamw   n ■ i 

10-   s 

functions as 
CASE SECTION <}. 

-        functions os  ,_, 
CASE STATEMENT^ —   SKI 

functions as SK3 

ROUTINE   <} 
functions as 

ROUTINE NAME   Q 

PARAMETER SET Q 

GF2 

Figure 10.4 - Integer Sum Program Control Description 

•    -  inililiti    inil^il I in ■ «■■MBMMa^MliMiMhlli ritm 



m^mmm^j ) i m umrnm—m*' «■m 

10-   9 

There are several problems which arise with this graph, which exhibit some 

weaknesses of the methods used in some cases, and faults in the particular relation and 

chunk definitions used in others. If we apply the REGARD2 operator as in the other 

examples, the PARAMETER SET chunk maps twice, which is proper, J then the 

ADDITIONAL PARAMETERS chunk maps an unlimited number of times. On a graph of 

machine code, the ADDITIONAL PARAMETERS chunk will map a limited number of umes 

provided that instructions bearing opcodes other than PUSH precede each routine cell, 

which is the usual case. Here, tho sequence of instructions is absent, and there is 

formally sufficient evidence for the mapping of ADDITIONAL PARAMETERS, in which one 

prior instruction Is Invented per cycle.« A solution to this problem is described in 

chapter 17. 

Deleting chunk ADDITIONAL PARAMETERS, the experiment runs to a stable, almost 

correct result. The chunking sequence consists of 10 mappings: the PARAMETER SET 

chunk maps twice, the CALL chunk twice, the CASE STATEMENT chunk twice (once for 

each section incorporated), the CASE HEAD chunk once, the CASE SECTION chunk twice, 

and the ROUTINE chunk once. This is exactly the right set of mappings, and the order 

does not violate information dependencies. The process adds 1? new descriptive 

constants to the Slate, 8 new tokens, and ovor 40 arcs. 

• About 10 other examples of various sizes have been run, including some which exhibit 
the same effect. 

  



10- 10 

All of th«s# corrwpond directly to the actual source and machine code, with two 

exceptions: 

1. Because of the shortcut taken with respect to the interaction 
between "appears before" and "precedes," a contradictory pair of arcs 
got into the Slate. This is directly preventable by use of a correct 
relation Interaction definition. 

2. On the last chunking (for ROUTINE,) the system found an 
instruction in the Case Section portion which could be identified as the 
final JRST. It used it rather than creating a new token, and the graph 
became connected This sort of effict has been prevented in most 
cases by defining the fucntions of r^ts •« such a way that one part 
can not have two independent functional descriptions. Providing such 
definitions (using "functions as") in the CASE SECTION and ROUTINE 
chunks would prevent this problem. The problem occurs only m 
©xplicationj in recognition, on complete instructions, a conflict of 
address contents wou'd have orevented the effect. 

The system has not developed the knowledge of the nesting of subparts in the Slate, 

and it appears that making it do so would considerably complicate the task. 

Also, It is not dealing at a conceptual level which permit» easy generalization to 

cover variations which preserve program equivalence, either in explication or In 

recognition. The variations introduced by local optimization crwate massive difficulties 

because the regularities which they depend on include control flow equivalences, which 

are not represented in our graphs at all. 

Of the 26 Instructions of the program, 10 have been provided by this explication of 

Its control structure. 

-   



I 

10- n 

EXPLICATION OF LOOPS 

The graph in Figure 10.5 represents the least specific representation of a loop 

which the system will treat as non-trivial. 

■ ~N« ^*                   functions as 
LOOP ^ '  

^-                   functions as 
TAIL<^ ■  

finishes with 

LV2 

Figure 10.5 - Minimal Loop Specification 

Unlike the case statement and select statement examples, the result for this one is not 

uniquely determined in our system.« 

Compiled instruction sequences for loop expressions can vary in several ways. 

Incrementing by 1 Is a special case which utilizes POP-10 opcodes which alter numbers 

by 1. Constants (known at compilation time) are treated differently than variable 

expressions, resulting In use of different opcodes in many cases. 

• In a more complete representation of the language the others would also have 
alternatives. 

- -1 



10- 12 

We have therefore provided a variety of chunks for representing fragments of loop 

constructs. When no basis for preferring one construct over another is in the Slate, 

then loops may be explicated in a variety of ways. For the graph in Figure 10.5, it 

assumed In effect that for a source language statement: 

"INCR X FROM El TO E2 BY E3" 

El, E2 and E3 were all expressions computed at run time.   The result was successful by 

the previous criteria. 

To show that other results are equally feasible, we deleted the three chunks that 

were used from bulk memory and ran the experiment again. 

This time a successful completion was reached by mapping two other chunks. The 

rystem in effect assumed that E3 was the constant 1, E2 a computed expression and El 

unknown. Because the order of accession of chunks is not controlled in the Slate 

system, any kind of minor change could yield the opposite order of results. 

SUMMARY 

We have established in this chapter that the Slate system is capable of explication 

as well as recognition, and that its knowledge representation does not carry • 

committment to only ore of those uses. The same chunks may be useful for both kinds 

of operations. In the case of incompletely specified explication tasks, the system 

develops en aroltrarlly chosen alternative. 

  —    .-J—^^_ _J__^« 



SEEING THE NECKcR CUBE 

CHAPTER  111 

To facilitate judging the generality and flexibility of our methods, we investigate an 

assimilation task which differs in important ways from all of the previous tasks. In 

1832, Louis Albert Necker reported that that edge drawings of certain crystals can be 

seen in two different ways, depending on the point of attention. Figure 2.1 illustrates 

one version of the phenomenon n which, according to Mocker's description, visual 

fixation on corner A will cause it to be seen as nearer than B, and fixation on B will 

cause it to be seen as nearer than A. 

The problem which we deal with is as follows: 

Given assertions of the vertical connections, horizontal connections and 
other connections Of the corners of the cube drawing of Figure 2.1 shown 
above, and the identities of the two rectangular faces and the corners which 
they include, (but no depth ascertions,) and having a knowledge of cube 
drawings which includes depth assertions, assimilate the givens so that they 
are augmented by additional assertions attributing depth to the givens. We 
require that the assertions made in assimilation be consistent with Necker's 
hypothesis, extended so that attention to any corner causes it to be seen 
(asserted) as part of the closer face.« 

This problem differs from the previous ones in several respects: 

1. The topology of part-to-part connections of the cube is unlike the 
topologies of previous tasks. 

2. The task involves geometric constraints. 

« We should point out that this is not a psychologically seriou? attempt to represent 
reversing figure phenomena or the Necker cube phenomenon in particular. [A71] As 
such, it would clearly be inadequate although it does establish the feasibility of explicit 
models built along the lines of the Slate system. This task is an exploration of the 
methods and a demonstr •;■ ;.n of particular qualities of the Slate system memories. 

 . 



11- 

3. There are multiple symmetries in the given information and in the 
knowledge of the cube. 

4. The  attention or focus of the subject is an explicit part of the 
problem. 

Each of these differences turns out to show features of the Slate's methods which do 

rot appear on the other tasks. 

One way to represent the cube drawing is shown in Figure 11.1, where by 

convention an undirected arc in the diagram represents a pair of oppositely directed 

arcs on the same relation.» The previously used relations arc defined as in the other 

tasks. The relation "connects to" is defined to be symmetric but otherwise 

unconstrained. Relation "is the side of" analogous to "s the type of". There are two 

relation interactions defined: 

AA has subpart B3 
and 

AA is on side CC 
yield 

B3 is on side CC 

AA has subpart C3 
and 

B3 is on side CC 
yield 

AA is on side CC 

These cause the faces to bo asserted to be on the same side as the corners which they 

» For clarity on all of the succeeding cube figures, eight arcs of the form <token> is of 
type CORNER have not been shown, even though they were present in processing. 

^^M_a^_MMa- ■ - 



11-3 

A' o. 

«A 

•r—connects tc—,'- 

-o 

C 
c 
o 

''o, 

\ 

-is of type- 

V 

--^FACE 

\ 
-connects to- 

2\ 
«1     » 

U       \ 
0) \ 
C I 
c       > 

\ 

\ £ 
t u 

> c \ I 
\l 

V 
;onnects to—lJ——T 

\ 
\ 

+\ 

M o i 
S i 

-o 

-v 
N. 

-connects to- 

"«A. 

+     is of type- 

Figure   11.1   - Graph Representing Necker Cube 

    I     llll 



11-4 

include, and cause all of the corners of a face to be asserted on the same side. 

As an interpret.»ion chunk for  hit graph consider the graph in Figure 11.2 

ÜACK FACE '-is on side---   ▼ -is of type- 

**> 
,<* 

0^. 

-connects to—N- 

\ 

o  -o 

1 

IT 

-o 
i) 

o4 
'o. 

u 
0) 
c 
c 
o 
u 

M \ 

V 

\ 

v ;onnocts to- 

> 

~  i 
U)    i 

■~    \ o \ 
u I 
c- I 
c t 

JL-i 

o 
M 
o 
0) 
c 
c 
o 
<-> 

-connects to- 

-o 

\ 

V) •*-   *- 
O   u 

i § a  0 

-connects to- 
U 
*' 

Of. 

FRONT FACE-* is on side       +     is of type 

FACu 

Figur*   11.2   -  Chunk  Representing Necker Cube 

A-___MaiM MHa^^^^— BBaaM^K— >a^_-M_BaBM,nBMa_-a .^.^aa, 



11-5 

The chunk cjn bo mapped so that either face of the graph is identified as the front 

face, giving a kind of two fold ambiguity. Because we have not identified directions, 

there is an additional eight fold ambiguity associated with rotations and reflections for 

each of the face identifications, all without addir., jny "connects to" relations. In order 

to remove some of the onentjtion ambiguities, the graph and chunk shown in Figures 

11.3 and 11.4 were used instead of the ones shown above.« 

Relations "is loft of" and "is over" are defined as lotal order relations analogous to 

"precedes." 

Demonstration of the cube assimilation and reversal phenomena are done as follows: 

Input information acquisition is performed by a set of operators directly analogous to 

the operators that process letter seo„jnce input. With a given graph in place, the 

system prompts t ie user: "Attending to what corner? :" The user replies with the name 

of a corner vertex, say CIS. This results in storage of an arc: "CIS is part of FRONT 

FACE." Bulk memory is addressed with a query, which finds the cube chunk and maps it 

in with face identification controlled by the input arc. The chunk it made to include the 

arc stored at the point of the user's reply. After chunking is complete, the user is again 

prompted: "Attending to what corner?;" and an arc is s'ored in thr grai h using his reply 

as before. If he names a corner on the current back face, then the arc will conflict with 

the chunk just acquired, and that chunk will be removed. The same chunk in bulk 

memory then maps in with the other face being the front face, and the user is again 

♦ As with the machine-code tasks, the availability of the given information in external 
memory is simulated by locking it into the SU-to. The chunk organization of the resulting 
Slate content shows that all of the given information was assimilated. 



11-6 

'/  vv 
is of type- 

x.     -Oj 

V / 
o   >. 

•is left of—«> i^+ 

i V 
•*/, 

L 

> 
O 

^Q 

\ 
-is left of- 

>   \ 

5 
I     o 

\   - 

V 
•is le 

.      \ 

ft of—i \ i*. 4. 

5« 
\ 

"FACE 

•is left of- 

r 0 

a 

A' 

°'<\^ 
—is of type  

Figure 11.3 - Graph Representing Oriented NecKer Cube 

■- 



11-7 

PACK FACE -^-is on Side---   +     is of type- 

>♦ 
0^ 

V / 
•is left of- 

n 
> 
o 

'o, i 

> 
i 
I« 
■o 

o 

r 
V 

•is left of« 

^ 

■t~- 
i 

I \ 
I i 
I  i 
I   < 

(D     l s \ 

\. 

■«•i 

N 
I     o 

-is left of- 

i 
In 
-o 

o 

\ 

I i k 
o > 
t 0 
<D U) a - 

''o 

•is loft of- 
\ 

■FACE 

FRONT FACE-« is on side        +    •—is of type- 

Figure   11.4  -  Chunk  of  Oriented Cube 

■    - ■ ■ .   . 



11-8 

prompted for a corner to attend to. 

The assimilation successfully adds depth information to tho given information about 

the cube. Once the cube is assimilated, depth information is always present. Either of 

the two orientations may be indicated, but only in alternating sequenc«. never 

simultaneously. The inputted depth information is always consistent with Necker's 

hypothesis that the attended-to corner is on the front fact. 

The only three parts that are unique to the Necker task are the prompt for a corner 

mechanism, the mechanism that stores the resulting arc, the routine that merges the 

stored result with the chunk of the subsequent mapping. This latter (merge) mechanism 

is necessary in order to bo able to remove tho effects of a previous attention arc after 

a shift of attention has taken place. This differs from the strmg «sembly tasks, where 

there was never any need to remove the arcs which represented previous input events. 

There are two kinds of input graph ambigu,ty, one arising from alfprnate ways in 

which the next chunk is selected :*d on arising from the way the token assignments are 

selected.   The cube task exemplifies the assignment type. 

We see that the system can in a sense experience tho successive perceptions of 

Necker cubes, but not express the ambiguity of the cube in the result graph. 

The differences between the cube task and all of our others help in understanding 

the capabilities of our methods. The definitions of the geometric constraints on the 

directional relations are adequate for this task, but they do not constrain enough to be 

generally adequate.   They permit constructs such as A above B to the left of C above D 

. ,_    .._.     >..,  ■  .   . - .   .^JI 



11-9 

to the left of A. The relation definitions could be extended to cover such cases in a 

way which caused the graph to always conto,n all the derivable "higher than" and 

"somewhere left of" relations; this would be unreasonably cumbersome for examples of 

interesting sizes.   A different approach is called for.« 

The system fails to take into account the adjacencies of vertices created by its own 

assignments. This lack leads to some errors in cases with symmetries. Thus for 

example in the graphs in Flures 11.1 and 11.2, the front face may map correctly and 

then the back face map incorrectly. The created adjacencies should affect the effective 

support ror various proposed assignments. In the S'ate system this would be a minor 

modification of the processing which occurs between assignments. 

CUMMARY 

We have learned several raw things from tha decker Cube task. The task is 

accomplished using processes developed for parsing noisy symbol sequences, and yet it 

is exhibit ,ig a particular effect from the phenomena of visual perception. This suggests 

that wo are able to identify functional similarities between tho two dissimilar tasks. 

Sv.:h simil.rities have both psychological and informational consequences. 

• This is one of several coses which make us want to separate a sense of ordoredness 
(vertical, hori7ontal, time and depth order are some of tho important cases) from the 

rest of the representation and mechanisms. 

-■  ■       — 1—' 



11-10 

The single-hypothesis property of the Slate memory is clea.ly exhibited. It is 

interesting that the cube topoiogy did not introduce new difficulties for the match 

routine. The need for a dynamic notion of support in the match process has been 

demonstrated. This means that the match must be guided by its own local hypotheses 

as well as the initially-available information. 

The weakness of Slate's regional tu'malism for representing geometric constraints 

has been exposed. A counterexample to the heuristic that any prior input information 

should always override tho /esults of chunking has been exhiüited. 

 ^  -  • - ■ ■ 



REPREStNTATION OF lUrCKMATION. 

CHAPTER    12   I 

This chapter presents the directed graph representation schema of the Slate s. -torn, 

along with parts of the program which implement it. 

DESIGN CONSIDERATIONS 

The choice of a representation for a particular problem has pervasive consequences 

in the approach to solutions, since it dütortnines what Gyrations are easy to carry out. 

The sensitivity of problom solving processes to small rhonjes in representation has 

been widely demonstrated on a diversity of tasks in tha history of artificial intelligence. 

See [r.71], chapter 2. Given a particular task to be porformod, it is often possible to 

take great advantage of the structure of that task in choosing a representation, so that 

the most frequent operations required by tho particular task are made oasy. For 

example, the two kinds of organization expressed in the two halves of telephone books 

reflect such advantages. 

Wo should thoroforo oxpoct that en a-priori choico of a representation, on a basis 

which is not rosponsivo to tcck ccntont, would commonly carry a corious porformance 

penalty relative to tho performanca of a task-specific problom solver. All of the 

evidence from the present project suggests that this is true for the Slate system end 

the tasks treated in this thesis.« 

• It also appears now that much of tho penalty for part cular tasks is avoidable. Dosign 
of Slate-ilka systems which take speed anc space advantages from the structure of 
particular tasks does not appear to be difficult. 

 . -.. ^■. ..-..■     — "- 



— - '" ■   '^•-■l ■■■Ill 

12-   2 

r' 

There ere • number of reesons for choosing to work on a general representation in 

spite of these penalties: 

1. To investigate problems common to sevarcil tttkx 
2. To develop approaches which can be applied to many tcsks. 
3. To develop a flexible tool for exploring new t«sks. 
4. To provide a performance reference for taik-specific systems. 
5. To explore the representation being used. 

The chief reason for choosing a task-independent representation for this work is 

simply that we wanted task-indopendant results. We wee seeking knowledge of 

problems and approaches which would span a number of tasks, and hopefully provide 

some insight into the entire class of problomf. 

RE-REPRESENTATION AND ITS CONSEQUENCES 

A useful guideline in dosigninj representations is (hat all of the regularities and 

structural features of the things represented should be simply identifiable in their 

representations. The Justification for this is twofold: t:>at any such information is 

potentially useful In reducing the difficulty of problem solving, and that the act of 

representing a structural feature tends to reveal the structure to the designer in a way 

which facilitates his designing. In u program, wherever a single item of knowledge is 

represented by more than one program item, then the representation is to that extent 

defective. It fails to represent the relationship between the multiple items, namely that 

they encoda the same knowledge. To the extent that tl J programs must deal with 

comparisons of such Items, the knowledge of their equivalence is obscured or lost. 

Depending on how the information is uccd, such re-represontat!ons can result in 

erroneous conclusions, failure to generülize, or other errors.   For both the designer end 

f 

■-   ■■ 



■ wmmmm 

1 
12-   3 

hit program, rerepresentation also limits the possibility of constructing a meta-level of 

representation. 

The principle that one item of Knowledge should be represented in one place 

reduces the space of acceptable representations. The three-level program structure 

described below Is In part a response to the desire to localize the program's 

representation of forma! regularities which span many tasks. 

GROSS PROGRAM ORGANIZATION 

This section presents the organization of the system into functionally independent 

/ 
parts and the communication of the parts.« 

The system is composed of a number of independent sections arranged into a linear 

sequence of levels, with each loval communicating only with its immediate neighbors, as 

shown in Figure 12.1 . 

« Programs and exercise data ere available through the author. 

 ■ , ■    - -  ■    -*             — —    --  -    -- m nfc—M——tW i    !>■ 



•*m 

12-   4 

Operations on Task States 
(three levels) 

Oporotions on Chunks 
(tour  levels) 

Operations on Arcs 
(three  levels) 

Figure   12.1- Strata of Groups of Operators. 

Etch level has one input port which it examines whenever it is called, and one 

output port where it deposits all of its results. Each level (except Level 1) has access 

to the Immediately adjacent n^xt lower Idvol, in that it can deposit in its input port, 

examine its output port, and call it. All lovols perform according to the same general 

discipline when they are called.   It consists of throa steps: 

1. Examine tho input port to idontify tha operator (command). 
2. If it is an operator performed by this level, perform it, taking any operands 

from the rest of the input port. Otherwise submit the entire input port content to 
the next lower level and call that level. 

3. Deposit result In output port end return control to caller. 

The three I'-vJs which implement the operations on arcs are described in this 

chapter, and the remaining operators In the next. (In addition there are parts for 

communicating with the user and for debusging.) 

\ 

■ ■ -  -   ■   —^. -   ■ 



 , —^ ^,—. 

12-   5 

DIRECTED GRAPHS 

Let V and R b* two disjoint sets whose members are called vertices and relations 

respectively.   An arc consists of a relational-triple and a chunk-list.   A relational-triple 

Is an ordered set of three symbols, say 

VI     r     V2 

where VI and V2 are vortices and r is a rt'ation.   A chunk-list is an ordered set of zero 

or more vertices, called chunk names.» 

A chunk is the set of all arcs which have a particular chunk name on their 
chunk-lists. 

Since an arc may have several chunk nsmes on its chunk-likt, the chunks of a graph do 

not partition the graph, but rather form overlapping sets. 

There are several memories in the Slate system, each of which holds a graph. (The 

system never treats arcs from more than on« memory as constituting one graph.) Each 

vercex known to the system is represented in two different wayi., depending on context. 

There is an internal symbol (an odd integer) for each vertex, and a printable name. 

Each vertex It either o constant or a token. Each relation known to the system Is 

represented in three different ways, depending on context. There is an internal symbol 

(an oven integer) for each relation, and there are two printable names, called the direct 

name and the converse name. 

• For reasons that are merely historical, chunks are identified by the names of vertices, 
and if ■ vertex Vi is in a particular chunk-list, then Vi is also part of a relational-triple in 
■t least one arc which has VI in its chunk-list. 



%Z —^^^^^^^————^—WWUNluii,,.,^,,, 
'mum 

12-   6 

If NV1 and IW2 are tho printable namos of VI and V2, and Nr and NCr are the direct 

and converse namos of r rospoctively, thon tho Slata system will take either of: 

NV1   Nr   NV2 

NV2   NCr   NV1 

as a reference to the relational tripb 

VI    r    V2. 

LEVEL I - GRAPH STORAGE 

All of the graph storage of the system is located in Level 1. The three graph 

memories mentioned above reside in this level, and so any use of them requires that 

Level 1 be addressed.« 

Each graph momory contont is rcprewnled by a sot of three-symbol groups in a 

table, with additional symbols In thj ttblj indicalina in which chunks each arc is included 

• The operations on ores presented below ore darived in part from a system by Roger 
Elliott. [E65] Ho dovoloped fad rotrioval systom" (by analogy to "information 
retrieval systom") in which CSSL jns woro roprüjontod by ores in a directed graph. 
The arcs were modo readaole to tha system usor, who could present quories ünsworc'ule 
from the groph. Answers ennsistüd of sols of ijres, counts or certain other simple 
responses. Tho examples davolopod included an airline reservation system, an 
orgemxation chart end a qualitativo ma? of city locations. 

His systom faced two problems tho Slato systom also faces: a nood for consistency 
in the graph end u nood to localiij end suppress from user's ottcntion the simple 
completion operstions of tran2itivo rtUions, cymmotric relations and so forth. To meet 
these noods systematically, Elliott u;ad a cot of dufining properties to bo associated 
with relation nemos. Coinpatiblo cots of prcporths dofino relational classes. Compiled 
routines cssociatod with particular dweos kopt tho graph consistent and complete 
occordlng to tho properties. The ucor could else Mint interactions between arcs with 
different relation names by o 'comUnj" stetomont, which was used intorpretivoly. 



12- 

Although the mer.rories accomodate arcs which are not in any chunk, we have not used 

them. In practise, arcs in bulk memory are members of exactly one chunk, and errs in 

the other memories are members of one to seven chunks, which has always been 

enough. 

Level 1 performs explicit storage in its table and explicit retrieval.« The Level 1 

operators are shown in Table 12.1 . 

The operators which take partial specification (the two which sot up gonorators) 

make it possible to search a graph. Those operators are used heavily in searching the 

Knowledge base and in mapping chunks into the gr&ph. 

* There is a design issue concerning which arcs should be stored and which should oe 
found by computation from ether information. (Arcs such as "30,000 is larger than 
'.7,318," "A equals A," "New York City is east of Los Angeles," are candidates for 
computational recovery from other stored information.) 

The design of tha systoii allows for such redundant arcs to appoar at the ports of 
Level 2. They can bo produced by appropriate relation interpreters in Level 2 rather 
than i :ing stored explicitly in Level 1. Thus Level 2 presents to the remainder of the 
system a set of virtual directed graphs for which the store/recompute issues have 
already been dealt with. 

For the relations used in these experimonts, tha decision has always been to store 
all known redundant ires explicitly rather than recompute any of them on retrieval. 
This leads to easy debugging and also to an empirical knowledge of the needs tor 
recomputatlon. 

Levels 1 and 2 have been separated from ccch other and from the rest of the 
system In order to make it possible to resolve store/recompute issues on a 
relation-by-relation basis. 

- 



■MMV^» 1 

12-   8 

Store Entor       3       symbols       represrnting 
rolätional-tnpld      of      arc      into      designated 
momory 

Retriova Cot cp a gonorator which will retrieve 
arcs frc.n momory on request according to 
a ,  .en partial or complete 
Gpucificjiion. (for      oxample:      JRST      is 
the epejuj of v, wh.jrj < represents an 
unspecified vcrtc-x to be discovered.) 

Gat,.ext Produce the njxl crc from a particular 
Ijonjrubr       tot       up       by       a       Ro'riovo 

Alter l.'^rn,   til   tra   cwnforming   to   a  e'von 
CpCCific&tidfl i.5 mjrnbors of a givon 
chunk. 

Mark rotriuvo Cat   up   a   co"Ofütor   of   arcs   of   a 
cpocificd chunk. 

GetmarK Frcduce tha noxt arc from a specified 
Qonorator tjt up by Mark retrieve. 

Domorkit Ramova iho most recently generated arc 
of u epecifiod gonorator from o 
tpocifiod cimnki if this ICJVOS the arc 
cuisido of all chunka, erase it. 

Query T.ct  v/hethor  a particular  arc  is  in a 
cpccificd memory. 

Storokill Turn off a cpjcifitJ gsnorator 

Erase lln.:^   L'.\   crcs  conforming  to  a  given 
bpecificaiion. 

Cloarmom Rjmovj    ell    crcs    from    o   specified 
momory. 

Tcble 12.1- Level 1 operators. 

-     - -■-    -■ -■ ■  -  ■ -■■ 



12-    9 

Lavel 1 does not restrict the graphs that are stored in any way, except that only 

bona fide arcs ar* stored. The operations which maintain graph consistency are in level 

2 «nd level 3.« 

RELATION DEFINITIONS 

This section presents a dafinition schema for relation;, and its program 

implementation. Thesi parts of the system serve two purposes: they exclude from 

memory some simpla combinations of arcs which the definer regards as contradictory, 

ar a they cause in'erential side effects to occur when certain combinations of arcs are 

stored in memory, the side effects Jwa^s buing the storage of additional arcs. 

We first present relational properties, which have no independent identity in the 

system. The proportios ore c^oupod in various v/ays into classes, which do correspond 

directly to progrcm parts. The doom ere cjcucijbd with relation names by a relation 

definition process, end üro used by relation interpreters in Level 2 of the system. 

* During system davolopmont, a complex method of Generating the arcs of a chunk was 
developed and later discarded. Lovols 4 end 5 contain these operators for this mdthod: 
retrievel, getnextl, retrieved getnext2, modjlinit, modalget, killfgon. In addition, level 5 
contains operators for mani^'ating binary marks (called paint) on vortices for 
bookkeopinj purposes. The primary use for thaso marks is to mark vertices already 
accessed by processes in order to prevent reprocessing and loops. These operators 
are: paintit, unpaintit, strlo, soeit. 

— —  ■    -■-  



~-»mmmmmm Mlll»M«IMlHi  ii i,,^^ 

12- 10 

RELAÜCr^AL PROPERTIES 

VV« express the relational prcporties by anothor directed graph representation, 

which Is not the araph system of tha Sljto. A prcporty consists of a test part and an 

action part. Let R - (A,P) be u set of relation rtmos tnd V - {V1,V2,V3) be a set of 

vortex names.« Lot G Ld ttie iüt of gr^hi which ein ba formed from the vertices of V 

and the relations of R,   Then a property tost part is a grsph of Q. 

An action part is either the symbol "FAIL" or a graph of G which is restricted: 

1. to contain vorticos only from thj corresponding test part, 
2. to contain arcs on roiülion A but not relation P, 
3. to contain no arcs contained in tha ccrrcspcnding test part. 

Arc Va A Vb in a tost part matchos an arc VI r V2, by substitution of VI for 

Vc, V2 for Vb. Similarly arc Vd P Vb in a tust pert mutches a cirected path of arcs 

VI r Vx, Vx r Vy, . . Vz r V2 by substitution of VI for Va, V2 for Vb. A 

successful match requires a consistent cat of vertex substitutions such that all of the 

arcs of the test part ere matched. 

The definitions are used as fwllows: Whan a request u add to stme target graph an 

arc, say X r Y, is prosontod to tha Levol 2 input port, the definition of r is used in an 

fiction which Is equivalent to the following informally described sequence, uc'ng the 

properties for relation r and the sot of trcs T which are tha arcs on relation r contained 

• A and P will match single Arcs end Paths rcspoctively. Although tha property 
definition graphs could bo extendad to moro than three vertices, wo have found no need 
to do so. 



12- 11 

In the target graph. 

First, for the properties which iiavo a graph as the action part, latch 
the test parts of the properties in all possible ways against the combination 
of T and the incoming arc. A successful natch mus» include the incoming 
arc either by matching against on ore on n lation A, or by the incoming arc 
completing a pa'i in T, whoso terminal vort.ces match an arc ^."> relation P, 
such that there was not a coi responding path in T alone. For each 
completed ma'ch, the substitution values of the vertices of the test part 
allow us to define a set of arcs corrbsponding to the action part in the 
obvious way.   All such arcs are stored with T to yield V. 

Second, all the properties which have FAIL as the action part ere 
matched in T*. If any matches are successful, all the arcs in T - T are 
removed from the target graph, leaving it in its previous condition, end a 
FAIL signal is returned. Otherwise, T' is retained in the target graph and a 
success signa1 is returned. 

The Slate system relations are dofinod in terms of the properties shown in Figure 

12.2 .* 

* Fo* completeness, all of Elliott's properties are shown, although 'Ot all are used.   An A 
denotes a single arc, P a path. 

       - .  .  ^iin ___ i , , ,   nT    ■ ■ —     ii        i ■mi ■in tiuiMitimni—mmmm 



12- 12 

PROPERTY NAME TEST PART ACTION PART 

irreflexiv« VI AVI FAIL 

reflexive Vi AV2 VI A V1,V2 A V2 

symmetric VI AV2 V2AVI 

•symmetric VI A V2,V2 A VI FAIL 

transitive VI A V2,V2 A V3 VI AV3 

one-follower VI A V2,V1 A V3 FAIL 

one-leader VI A V2,V3 A V2 FAIL 

no-rejirowth VI A V2,Vl P V2 FAIL 

unlooped VIP VI FAIL 

no-choin VI A V2,V2 A V3 FAIL 

Figure 12.2- Relational Property Definitions 

Tho classos oro doflnod by sots of properties.   Table 12.2 gives the class numbers 

used and the corrospondinj sots of prcpertios. 

Wo havo usod tho closost onalosous property names and class numbers from Elliott's 

definitions where cpplicoblo. Our clcsscs are not quite equivalent to Elliott's because In 

hit treatment of vertex variables, Elliott allowed one vertex name to match more than 

one variable, thus morging some topologically distinct cases. He used only 6 of hie 

classes In his demonstrations. We use 9 of ours, including 6 analogous to his. As noted 

elsewhere, our eddltion of the no-chain property is a correction which makes possible 

corroct definitions of relations which map tatween disjoint sets. 

  



12- 13 

CLASS NUMBER PROPERTY LIST 

1 

3 

irrofloxivo, asymmütric, ono-loacisr, 
one-followar, unlooped, no-regrowth. 

15 

23 

33 

35 

36 

irrofloxiva, asymmotric, One-leader, 
unlooped, no-resrowth. 

irreflexive, asymmetric, 
unlooped, no-rt^rowth. 

transitive, Irreflexiva, asymmetric, unloopod. 

symmetric 

(none) 

no-chain,   •, _ '. ilower, one-leader, 

no-chain, one-follower, 

no-chain. 

Tibia 12.2- Relational Classes and Their Properties 

The use of the relational classes in the Slate systam is shown in Table 17.1 . 

CREATING RELATION DEFINITIONS 

One of the operators at tho tolotype intorfaco of the system is DEFINE RELATION. It 

prompts for tho relation name, tho converse nrnt, tht relation class number end . "mark 

word." which cmounts to a requirod restatement of the one-leader and one-follower 

properties defined above. All of those are entered into a table of relatir-, definitions 

which can be accessed by the internal symbol of tho relation. 

  ■— 



12- 14 

CREATING VERTEX DEFINITIONS 

Similarly there is an operator DEFINE VERTEX which prompts for a vertex name and 

i property word which specifies whether the vertex bo'mg defined is a toKen. These 

two Items are entered into a table which can be accessed by the vertex internal symbol. 

Vertices may also be entered into this table by an internal vertex creating routine, 

which creates a three-letter print namt for the vertex. 

LEVEL 2 - RELATION INTERPRETERS FOR ALL RELATIONS. 

For each class there is a corresponding set of four routines in level 2 which 

constitute the interpreter for that class.  For each of the following, 

1. Store operator 
2. Retrieve operator 
3. Alter operator 
4. Erase operator 

there is a corresponding routine which is responsive to it for all requests which enter 

Level 2 and which specify a relation in that class. There is a similar set of four for 

pseudoclass Oi they are used whenever the relation name is not specified in the input 

port. 

The store operator routine would be called, for example, if the LOVPI 2 input port 

specified a store of the arc: "JRST is the oocode of BEW." It would call Level 1 enough 

times to determine that there was no conflicting arc In the memory, and then call Level 1 

to store the arc. 

In the event of conflict, the arc would not be stored, end this fact would be noted in 

the output port of Luvel 2.   Since all storage requests ;.iust pass through Level 2, this 

■ -   ■ "--    -  ■ -   ■ 



12- 13 

assures that the coocurronci) and inforunce proporties of each individual relation are 

maintained. 

The store operator routine for class 15, a class of transitive relations, would be 

called if a store of "BEW appears before JO.vT wore requested. It would call Level 1 

several times to detormine all of the "appoors büforo" ores doducible from this one in 

conjunction with currently stored arcs, and would request storage of these as well. 

For example, if the memory containod tha arcs shown in Figure 12.3 ihon tho 

memory would contain thj arcs of Figure 12.4 after storing this arc. In this ccse a 

request to storo a singlo arc rw-iJt; in thj storaga wf six arcs. 

Level 2 also has a Gotnext cportitor, which is entirely analogous to tho Gotnoxt 

operator of Level 1, oxcopt that it oporatuj on Qonorators set up by the Love! 2 

Retrieve operator rather than tho ono in Lovol 1. 

RELATION INTERACTIONS 

Thoro ore rolctlons which ere jointly meaningful which must be used in a 

coordinated fashion to avoid Inco^ruitios. For oxcmplo, in graphs denoting sot 

membership, the relations for sot momborslvp and sot inclusion must be coordinated so 

that the members of a set aro also members of any set which includes that set. 

Another interacting pair of relations, usod in tho parsing of letter strings, is "is loft of" 

and "starts with." See chapter 4.   In building tho perse tree from a letter string, we 

mm 



II       > ■!    II   ■■     I I  ai .•■•_• ■■_ 1   ■     ■'■ ■   " VT^m***^*^*^*** 

12- 16 

BEU jon 

Figure 12.3- State Before Storing trc 

Figure 12.4- State After Storing Arc 

want to keep trwk of tho loft-right relations between syntactic constructs as veil as 

letters. In particular if wo havo, for come vortices AA, B3, CC. the arcs "AA is left of 

BB" and "CC starts with ED," thon wo wont to infer ore "AA is left of CC" 

Level 3 implements the Kind of interactions exemplified above, using an operator 

callod Fullstoro. 

■-1—-   —:    -■"—--■ ^^MMMHWM«aMai   - — _^J^—^^^^^^1^^ 



ppp^^OTB     iiiiii    -wi  piP« i.—.--.«...■-.-«■■..--.   i        IIUI.UIII m ILIURVMIU. auiii IWKI  «ui ««wmavwovwvwi    ...««.<..,«.,..<«,   <   ...      ,    ^    .......... .    ..<..,...<.......««.w..,^,.!, p . u.    ,,     .,.      .    n im^p p« 

12- 17 

We defin» an intoraction specification, which consists of two arcs (called condition 

■res) on a throe-vertex graph, anj a third arc (called an inference arc) on the samo 

three-vertex gr.ph. The vortices of this graph are called variable vertices, and the 

graph Is callod a variable graph.« 

Whenever an arc with the same relation name as one of the condition arcs appears 

in a store request to Lovel 3, a search is made for an arc having the same relation name 

as the second condition arc, end for which there Is a unique mapping CM of three 

distinct vertices onto the tree variable vertices such that CM mops the arc to bo stored 

^nd the arc found by search onto the two condition arcs In the oovious way. If such a 

second arc Is found, then Level 3 issues a request to store both the inference arc and 

the requested ore. This is repeated for ell of the interaction specifications which match 

the requost. Since the inference arc might itself load to inforoncos, the store request 

for this jrc is issued to Level 3 rather than Level 2.   Level 3 is the only recursive level. 

A second offoct of the Level 3 operator, Fullstore, is to include both the Store 

operation and the Alior operation of Lovel 2 under a single operator, so that they need 

not be specified soparately at higher levels. Fullstore accepts an arc bearing t set of 

chunk marks« It InclKlos the arc In all of the chunks named in the set. 

In addition to straightforward inference-making, the relation interaction mechanism if 

used to p, ^vent certain combinations of arcs. For example, the relation "precede*?" and 

the relation "begins with" Interact to prevent an element from preceding the beginning 

e This graph exists for exposition purposes only.   The description does not represent 
the way It was Implemented 

.-.  ■    ---——^ ■    ' -    ---     -^ —.J.^^,.-J.^. »^. 



12- 18 

of a sequence. This is accomplished by making an inference from the undesired 

combination which is sure to be rejected according to the definition of its relation. The 

rejection leads to failure of the attempt to complete the combination. (A more 

aesthetically pleasing way would have been to implement class and fail notions like those 

for relations.) 

The interactions used are shown in Figure 1^5 below. 

ARC PROCESSING OVERVIEW 

We can regard the Level 3 input port as a means of access to a set of graph 

memories which havo their vertox names end relation names in common, for which 

consistency is guaranteed, and for which the simplij (interaction) consequences of 

knowledge of an arc are automatically included in the graph. 

This organization reliovos ell of tho processes which use the graphs from the burden 

of keeping thorn complete and correct. Kooping the graph free of conflicts and 

discovering the inferences to ta medo from a Qiven graph both involve a large number 

of contingencies, even in slmpki cssos. Tho avaiUbility of a fairly sophisticated storage 

medium at the ports of Level 3 thus makes tho specification of all of the higher levels 

much easier. 

There is some overlap between tho capabilities of the relation interaction mechanism 

and the inferential mechanism of tho relation definition schema.   Where possible, the 

  ■ — 



I     ■      II I I ■     ■ <— '   ™ "   —^■^■■- 

12- 19 

MATCH ARCS 

AA is a subsev of BB 
CC is a membftr of AA 

INFERENCE ARCS 

CC is a member of BB 

AA begins with BB 
CC precedes BB BB precedes CC 

AA ends with BB 
BB precedes CC CC precedes BB 

AA precedes BB 
CC starts with BB AA is left of CC 

AA fin ihes with BB 
BB is left of CC AA is left of CC 

AA is left of BB 
CC starts with BB AA is left of CC 

AA is left of BB 
AA is part of BB BB is left of BB 

BB is left of AA 
AA is part of BB BB is left of BB 

AA is part of BB 
CC is the side of BB CC is the side of AA 

BB is part of AA 
CC is the side of BB Cf. is the side of AA 

Figure 12.5 - Relation Interaction Definitions 

__.  ■ - 
- —      -     ■--  -■-      ..^■.i-. ^—^^—. ■- 



MMM mmmmmmm- - 

12- 20 

latter  have oeen used since we believe that thoy are faster, and the interaction 

mechanism Is used only when two different relations are involved. 

II      IIIMIIIl«— 



CHUNK PROCESSING OPERATORS, HEURISTICS AND EVALUATION 

CHAPTER 1J I 

OVERVIEW 

This section describes the chunk processing parts of the Slate system. The purpose 

of the description is to provide a basis for evaluating its primary heuristics and modeling 

the effort expenditure Of the program. 

The system maintains three graph memories: the Slate, which holds the inpt* graph 

in its current state of augmentation, bulk memory, which holds all of the chunks of the 

knowledge base, and query memory, which holds a query being addressed to the 

knowledge base. 

A major portion of each task consists of attempts to augment the Slate using chunks 

from bulk memory. A single attempt to augment the current graph passes through the 

stages diagrammed in Figure 13.1. 

The principal actions of these parts are as follows: 

Query Formation - creates a graph which is a subgraph of the current Slate content. 

This graph represents the part of the Slate for which an augmentation is desired. If the 

query graph is smaller than the entire Slate content, then the subsequent processes 

take correspondingly less time. 

Knowledge Search - identifies chunks in bulk memory which have possible overlap 

with the query graph.   The possible overlap must exceed a threshold score computed on 

_._-_ .  ,        ■   - - ■  
    





13-   3 

Chunk Mapping Cycle - 

For each chunk, in rank order until the first success, do: 

Find a set of token substitutions on the chunk which allow it to be copied into the 
current graph without either contradiction or inadequacy of evidence. 

The mapping process succeeds if it finds some partial mapping from some of the tokens 

of the given chunk to «ome of the tokens of the graph, provided that its rules of 

evidence are satisfied.« 

This set of operations may have one of two outcomes. Either a new set of arcs 

enters the graph from the particular chunk which was successfully mapped, or else the 

graph it unchanged and there is no chunk which will map in. In our experiments the 

cycle is repeated whenever a chunk is successfully mapped, except in a few cases which 

are noted. 

OPERATIONS ON CHUNKS 

This section presents the operators which have effects which are of chunk-sized 

scope. They also operate on mult'ple memories ratiier than just one. Figure 13.2 

shows these operators and their dependencies. 

The functions of these operators are described below. 

a The rules of evidence are summarized near the end of this chapter. 

- --—- - -■ -  — — -  MhMMM^B^ 



m^^mmm^mmmtm 

13-   4 

THE REGARD OPERATORS 

The operator REGARD causes the system to attempt assimilation of the current Slate 

content. It is the highest task-indepundent operator. It accomplishes the actions shown 

in Figure 13.1 by sequential use of tho followirs operators: Makequery, Searchsetup, 

Searchget (several times), and a cycle of Proparechunk and MAPCHUNK, ending with 

INSERTCHUNK if MAPCHUNK succeeds. The oporators REGARD and its alternate 

REGARD2 should bo understood as one, since REGARD2 is used only when its effects are 

identical to those of REGARD. It skips tho query-formation step and uses the Slate 

content as the query. 

QUERY FORMATION 

The Makequery operator forms a q^ery graph in query memory from the current 

graph. 

We can rogs-d the Slato contont as consisting of an "uninteresting" 

already-explained part and an "intcrcstmj" unexplained part, corresponding to tokens 

which have or have not been mapped onto successfiilly. The query graph formed by 

Makequery consists of the union of all of the one-arc neighbor noods of tokens which 

have not been mapped onto more than a certain threshold number of times. This 

threshold is zero for all experiments except the machine code and Necker cube tasks, 

where indefinitely many mapping: onto certain vertices are necessary.» 

Notice that the selection of interesting vortices does not partition the Slate content 

along ch ink boundaries. The old part of a nowly introduced chunk is uninteresting, and 

the new part is interesting.   Several earlier query formation methods tried to identify 

— ■aamaiMaiaM ■MMBBMaMtfrf 



~— 

13-   5 

the interesting chunks rather than vertices. These tended produce excessively large 

queries, and therefore excessively large responses, leading to much irrelevant and 

repeated work. A method based on recency of acquisition and another based on chunk 

inclusion were both ineffective relative to the method described above. 

SEARCHSETUP AND SEARCHGET 

Two operators implement the search for chunks which plausibly co-Hd map into 

query memory (and therefore into the corresponding portion of the result graph.) One, 

called SEARCHSETUP, sets up a generator of chunks for a search of a specified ■ amory. 

A second operator, SEARCHGET, discovers the next chunk which meets the threshold of 

acceptability in a search set up by SEARCHSETUP. 

PREPARECHUNK 

The first, PREPARECHUNK, creates a table of scores showing the degree of 

correspondence between the neighborhoods of tokens in the chunk and tokens in the 

target graph. This table, called the Support table, contains a score? for every possible 

pairing of a token in the chunk and a token in the graph. For a particular chunk-token/ 

graph-token pair, points are given for every arc in the chunk for which there is a 

correspon^ng arc in the graph, as shown in Table 13.1 below. 

* For the latter, an unattainable threshold can be used, making all tokens "interesting." It 
is faster to skip selective query making by using the REGARD2 operator rather than 
REGARD for assimilation. 

.   ■  ■■   ■   -   -   ■  ■    ii     iniiilHiiMia rii i iiMiiMiniiia 



POINTS CHUNK ARC 

13-   6 

GRAPH ARC 

1 point T R T T R T 
T ■ any token 

20 points CRT CRT      R- Relation name 
C - Constant name 

Table 13.1 - Support Table Scores 

The effect of the higher score for arcs containing constants is to let arcs which 

correspond on constants outweigh any accumulation of arcs which correspond by 

substitution of tokens only.   (Most vertices have many fewer than 20 incident arcs.) 

The following is an example of the support computation. Figure 13.3 shows a graph 

of a section of machine code.   It is part of the example shown in Figure 9.17 . 

Figure 13.4 shows the chunk for which the support is to be computed. 

Table 13.2 shows the support table resulting from the application of the 

PPPOARECHUNK operator to this pair of graphs. 

lakequory 

Searchsetup 

Searchget 

Preparechunk 

Mapchunk 

Insertchunk' 

Regard 

RegardZ 

Slotfind 

Remover 

Figure  13.2  - Dependencies Among Operators on Chunks 

 - - — U^MMM 



I"1" 

13- 7 

PAH-- 
X 

-RON-"! 

UEG- 

UAG- 

NIS- 

TIT-- 

is the address 

■is the adaress 

i 8 the address 

•is the address 

is the address 

•is the address 

■ i s the address 

in > JOR contains 
I 

in > KAH contains 

in > TID contains 

in > niF contains 
4> 

in > BEL contains 
4> 

in > HEB contains 

i s the address 

is the address 

i s the address 

i n- 

i n- 

RIU-- 

UAu- 

is the address 

■is the address 

is the address 

-is the address 

 > HET contains 

 > riAV contains 
i 

in > UOG contains 

in > DES contains 
 ^ 

in > HEN contains 
 '4, 

in > MOP contains 

in > HAU contains 

in > Slfl contains 

opcode— —> MOVE 

.-_>   TAMP 

 i,      IOCT 

 - ACIC; 

 ^ MOVPI 

 >   PAII P 

 >     IRCT 

 v hnvw 

-.^ AnnR 

nn/^rtHo —— «  i AH i'A 

 ^ Mnvp 

 >   TAMP 

 ^      IRCT 

opcode— —> AOS 

Figure 13.3 - Current Graph State For Support Computat i on 

— . -  - ■  - 
   -■-  i >.  ■■      IM ■ H^ Wilil MaH^iM ■MM^^^^MMMMM ^M^^HMI 



mmm. 

13-8 

is tho opcode of                 '• *•»• address In 
<CAME  -•- ST1 •« ■  

is the opcode .,   I 
JRST —^ ST2 

is the opcode of       « !• the address in 
AOS  -»► ST3  -♦ 

SELECTiON TEST -• 
fi 

SELECTION VALUE -^ 

SELECT STATEMENT -«• 
functions as 

CONTROL SELECT ST5 
functions as 

Figure 1?!.4 - ChunK for Support Computation 

h' ——  ■--     -■ 
.,        —-^     ^. L. .       ■       ....>..-. 



13-5* 

ST2 ST3 ST1 ST4 ST5 
JOR 1 1 2 1 0 
KAH 2 2 22 1 
TID 22 2 2 1 
MIF 2 22 2 1 
BEL 2 2 2 1 
WEB 2 2 2 2 2 
HET 22 3 3 1 
MAV 2 2 2 1 
WOG 2 2 2 1 
DES 2 2 2 1 
MEN 2 2 2 4 
:/OP 2 2 22 1 
HAW 22 2 2 1 
SIM 1 22 1 0 
PAM 0 0 0 2 
RON 0 0 0 2 
WEG 0 0 0 2 
WAG 0 0 0 1 
NIS 0 0 0 1 
TIT 0 0 0 1 
RIW 0 0 0 1 
WAJ 0 0 0 1 

Table 13.2 - Computed Support Table. 

The values in the support table are computed from the two graphs.   For example, 

the value of 22 for ST3:MIF is computed as follows: 

■ -■ 



13-10 

CHUNK ARC POINTS        GRAPH ARC 

ACS is the opcode of ST3 
?T2 precedes ST3 
9T5 is the address in ST3 

For the pair ST3:HET, 3 Points: 

ST2 precedes ST3 
ST5 is the address in ST3 

For pair ST4:MEN, 4 points: 

ST4 precedes ST5 
ST4 is the address In ST1 
ST4 is the address in ST1 

20 
1 
1 

U 
1 

1» 
1 
1 

ACS is the opcode of MIF 
TID precedes MIF 
WEG is the jddress in MIF 

WEB precedes HET 
MEN is the address in HET 

MEN precedes MOP 
MEN is the address in TID 
MEN is the address in HET 

Table 13.3 - Sample Support Table Computations 

The  Preparechunk operator passes over the entire chunk once, simultaneously 

computing all of the value's of the Support table. 

MAPCHUNK 

MAPCHUNK uses the support table to select the sequence o* assignments of chunk 

token to graph token which it tries. 

The flow of control of the MAPCHUNK operator is shown in Figure 13.5 . 

• The method of accessing graph stor.ge in Level 1 involves hash tables which allow 
arcs to be found more than once by a gsnerator. P-ese are always treated as separate 
occurrence!., with the result that some support scoros are higher than the correct value. 
In each of these two cases, one excess point of support is attributed to a pair. The 
mapping process is not particularly sensitive to this kind of variation. 

■ ■-■- — -- _ -   ■ - ■ 



— 

13- 11 

MAPCHUNK iterates through the possible assignments offered by the Support table 

Enter 

Test dotal realized support ♦ 
largest possiblo complotion sum) 

vs. 
Thresholo 

I 

Low 
•* Fall 

Select an Assignment 

I 
None 

Try Assignment (A:signer Operator) 

I 
Adjust Support Table and Realized Sum 

for Success or Failure of Result 

Copy Remaining Part Into Slate Conflict 
> Fail 

i No Conflict 
Successful Map 

Figure 13.5 - Control flow under MAPCHUNK 

until they are exhausted or hope is lost. If the possibilities are exhausted (indicating 

potential success,) a new token is created to correspond to each of the unassigned 

tokens of the chunk. The arcs on those tokens are mapped from the chunk, completing 

the copying of the chunk; if this final copying produces a conflict, the entire mapping of 

the chunk fails.   Otherwise the mapping has succeeded, and all of its effects on Slate 

  



■" ■■,l1 

.if 

1 ■ 

13-12 

content are retained.   A detailed example appears below. 

Assignor operator 

The assignor operator processes a chunk-toKen/ Slate-token pjir, P, specified by 

the MAPCHUNK operator. It can be thought of conveniently is a token-renaming copier 

of a local region of a chunk. 

It uses a set M of token pairs, and maintains the correctness of the set. When 

ASSIGMER is called for the first time by MAPCHUNK, M is empty. Thereafter M contains 

all of the pairs for which assignment terminated successfully.» 

ASSIGNER attempts to map the one-arc neighborhood of the chunk token i.^o the 

ono-arc neighborhood of the Siafe token. For each arc A incident on the chunk token, 

ASSIGNER attempts to create a corresponding arc C(A) to add to the Slate token 

neighborhood.   If Vc is a vertex of A, then its corresponding vertex c(Vc) is 

Vc - If Vc is a constant; 
Vs - if Vc is a token and Vc:Vs is in M(union)P; 
undofined - othorwiso (i.o. if Vc is a token 

and no pair Vc:t is in M(union)P.) 

If C(A) is VI r V2 then C(A) is c(Vl) r c(V2).   If a vertex of C(A) is undefined then 

ere A is ignored. 

« The operation of MAPCHUNK makes all of the pairs of M unique. If Vl:Va and V2:Vb 
are pairs in M, then VI neq V2 and Va n©q Vb. Also, the sots of left and right members 
of pairs are disjoint, since the sets of chunk tokens and Slate tokens are disjoint. 

M is ma ntained as a set of arcs on a bookkeeping relation, "maps onto," in query 

mtimory. 

-   —"- 



13- 13 

ASSIGNER attempts to store C(A) in the Slate. If no storage conflict results, 

ASSIGNER continues to process arcs from the neighborhood of the chunk token. 

In the event of a conflict, ASSIGNER removes all of the arcs that it has stored in the 

Slate and returns a failure signal. If all of the arcs incident on the chunk token are 

successfully processed, then P is added to M and a success signal is returned. 

One of the operands of ASSIGNER is the name tf the chunk being built. All of the 

arcs added to the Slate are included in this chunk. Thus ASSIGNER operates to augment 

a particular chunk in the Slate. 

There is a complication to the action of ASSIGNER which causes it in some 

circumstances to process nore than ore pair of tokens. For convenience it is discussed 

after the example. 

INSERTCHUNK 

INSERTCHUNK is the highest 'evel Slate space management operator. It adds a 

designated chunk, whose arcs are already in the Slate and marked, to the list of chunks 

H the Sliite. If necessary, it selects and deletes a chunk in order to keep the total 

below the fixed limit. 

INSERTCHUNK uses the operator SPACEGET to provide an empty space in the Slute, 

and the operator PUTCHUNK to fill it. 

■ - -       ■      ■       -         . ■■_■-■-.. -.-■-.    —    ■..■ .       _   _     ■        . ■■       ■ ^   --     ■ -■■-       -^^tA^^M 



"mi'    ■ -».»^ i-mn: ■   ■      ■r-i"    ■-....'——.».. -■. ^., ,. ». 

13- 14 

SPACEGET 

SPACEGET creates en empty space in the list of chunks in the Slate. It uses 

operator SLOTFIND to identify a slot to be filled, and if necessary it uses operator 

REMOVER to remove the chunk currently occupying the slot. 

SLOTFIND 

SLOTFIND finds a chunk slot in the Slate as follows: 

1. If the Slate contains less than the limiting number of chunks, an 
empty chunk name slot is selected to be filled. 

2. Otherwise, if there is a chunk which has been marked as included in 
some other chunk, ("covered"), then such a chunk is selected for 

removal. 

3. Otherwise, a chunk is randomly selected for removal. 

REMOVER 

REMOVER removes a designated chunk from a designated memory. Chunk remove! 

consists of removing the chunk name from all of the chunk-lists of all of the arcs in that 

memory, and removing any arcs which thereby have empty chunk-lists. Thus removing 

a chunk may or may not remove arcs. 

PUTCHUNK 

PUTCHUNK enters a designated chunk name into an empty slot in the list of chunks in 

the Slate. 



mm*m**rm*mm 

13- 15 

EXAMPLE CF AUGMENTING THE SLATE GRAPH 

Now we can follow the action of MAPCHUNK on the graphs of figure 13.3 and figure 

13.4 . The sequence will result in the mapping of the chunk and addition of arcs to the 

Slate. 

The first operation is to test the sum of the support values o« past successful 

assignments (currently 0) and the most optimistic sum of future assignment scores. The 

latter it the sum of the support table column maxima (currently 74.) The reference for 

this test is a threshold which is preset externally. An acceptance threshold of 40 was 

used for the machine code experiments. This threshold in effect requires thai two arcs 

containing constants be mapped or potentially mappable. If this test fails at any cycle 

the effort to map the chunk ceases, all Of the arcs stored during this call on MAPCHUNK 

•re removed and a failure signal is returned by MAPCHUNK. The test succeeds here, 

(74    S    40). 

The next step it to select an assignment. The Support table is scanned and TID:ST2 

it found to have a maximal tupport value. The ASSIGNER operator is called with MIF 

ant. ST2 as Slate and chunk tokens respectively. The assigrment succeeds. No arcs 

have been added to the Slate, since any two-token arcs would have an undefined vertex, 

and the one arc having a constant in the chunk (ACS is the opcode of TID) 

was already in the graph. 

The next cycle successfully assigns ST3 to MIF. A new arc, "SELECTION TEST is the 

function of MIF," has entered the Slate. The next cycle successfully assigns ST1 to KAM 

without adding new arcs. 

■ 



1 ' 

13- 16 

The next cycle attempts tc assign ST4 to MEN. This fails because of a conflict 

between the arc "RON tc th* address in KAH" in the Slate and the attempt to store arc 

"MEN is the address in KAH," which is a contrad.ction under the defined properties of 

class 3, of which "is the address in" is a member. 

The next 7 attempts are: 

assigning: STORING THIS        conflicts with THIS 

ST5MEN 
ST4:WEB 
ST4:PAM 
ST4:R0N 
ST5:WEB 
ST5:PAM 
ST5:WEG 

MEN is the address in MIF 
WEB I« the address in KAH 
PAM is the address in KAH 

(succeeds) 
RON precedes WEB 
PAM is the address in MIF 

(succeeds) 

WEG is the address in MIF 
RON is the address in KAH 
RON is the address in KAH 

BEL precedes WEB 
WEG is the address in MIF 

This exhausts the support table. Of the 132 possible assignments, 89 had non-zero 

support. Of these, 11 have been tried, of which 5 were successful. (Selection is done 

m a space containing 190,050 possible mappings for this case.) There is a remaining 

unassigned vertex ST6 in the chunk. 

The mapping is comp.ef-jd by copying the entire chunk in, performing all of the 

substitutions of the existing assignments, creating a new token to be the assignment of 

any yet unassigned token. The sot of arcs oddtd by the mapping process is shown in 

the graph in Figure 13.6 . 

At thi* point there is an arc in the graph which co. responds directly to each arc of 

the chunk. The chunk mapping process is an all-or-none process in this sense. Any 

single failure to map one arc will cause aii of the accessions for a particular chunk to be 



"■  -     ■ ■" p I 

13-17 

SELECTION TEST 

SELECTION VALUE 

SELECT STATEMENT   

is the function of 

is the function of 

is the function of 

CONTROL SELECT  

ROH 

is the function of 

•MF 

»ubP^ 
RON 

Figure 13,6 - Arcs Added to Graph of Figure 13.3 
by Mapping One Chunk 

removed. 

FORCED ASSIGNMENTS 

The mapping process exemplified above is simpler than the one used in the 

experiment« in one important respect. When the success of a particular assignment 

makes the assignment of certain other pairs inevitable, then the ASSIGNER operator 

carries out the assignment of these other pairs as well. 

C naider the state of the above example just before the first failure of assignment. 

The Slate contains arc "RON is the addrass in KAH", the chunk contains arc "ST4 is the 

address in STl", and ST1 has been assigned to KAH.   To map this chunk, the arc on STA 



13-18 

and ST1 must üe mapped in somehow.   Any assignment of ST4 other than ST4:R0N will 

conflict with the former arc, since by the properties of relation "is the address in", 

(Figure   12.2   -  the  one-leader  property) the  subgraph   >.<   on  this 

relation is contradictory.    So it Is necessary to assign ST4:R0N.   The first assignment 

failure is caused by th,s particular contradiction. 

The Key to this necessity is that relation "is the address in" is single-valued for 

vertices on which its ercs are positively incident. 

The method ascribed below forces all of these 'necessary" assignments to be made 

as soon as their necessity can be dotormined. 

When each relation is defined, there is associated with it a "mark word" which 

contains a pair of symbols which specify whether it is positively and/or negatively 

s.ngle-valued. When ASSlGNER finds an unspecified arc (a two-token arc with the 

second token unassigned) it uses these symbols to decide whether the assignment of the 

other token is forced by this arc. If so, ASSlGNER calls upon itself to perform the other 

assignment immediately. There is a switch in the system to determine whether this 

forced-assignment test is performed. 

What beneficial and harmful effects does the introduction of the forced assignment 

heuristic have on the system? The evaluation of the forced-assignment heuristic Las an 

efficiency aspect and an accuracy aspect. The use of forced assignments avoids the 

effort which would be expended otherwise in pursuing assignments that could not 

possibly succeed.   It also causes some attempts at mapping chunks to succeed where 

- 



^ummmmm^mm^mmm^i^^*^^^—    ■■■■i   i—^^^^^m^^^i ^^^w^^m^^mm   ■    i        a   ii i  -i -i  . 

13- 19 

they wcdld otherwise fail. This occurs because a set of individually successful 

assignments may be incompatible. If, in the example above, we tried assigning SThKAH 

and ST3:SIM, both of these assignments would succeed. Both also have maximal support, 

so that this sequence is feasible. However, therd remains no feasib'e assignment for 

ST2. The two assignments are consistent with their immediate neighborhoods, but not 

with the requirements of the chunk. There are no means for removal of successful 

assignments in the system. 

Tests on letter-sequance mapping indicate that when forced assignment is turned 

off, these failures to perform compatible assignments are the principal error source of 

the system. 

For the example, with forced assignment turned on, all of the assignments after the 

first are forced. 

The effort taxen by the two cases can be compared as follows: 

ASSIGNER CALLS LEVEL 1 ACCESSES 

Forced assigns 5 280 
No forced assigns 11 681 

Table 13.4 - Forced Assignment Effort Effect 

This saving is representative of a general increase in speed which occured when forced 

assignments were introduced into the system. 

From the effect on accuracy, the significant saving of effort of assignment, and the 

fact that the test for the necessity of a forced move requires trivial effort, we can 

    - —■——" 



^m-^m^m     i     ii MBH« 

13-20 

conclude  that  the  forced-assignment heuristic is a beneficial  addition to the  basic 

mapping method. 

THE USE AND EVALUATION OF THE SUPPORT HEURISTIC 

Finding a good partial -latch of a chunk to the Slate content potentially involves 

combinatorially large rumbers of possibilities. For the small example above, there are 6 

tokens in the chunk and 22 in the Slate, so there are 74613 ways to assign all tokens, 

158004 ways to assign all but one, and so forth. One way to select a good partial 

match would be to evaluate the goodness of fit of each of these and select the best, a 

prohibitively extensive solution. 

The Slate system constructs only a single partial match in this situation, and engages 

in no overall comparisons of match fits at all, and so avoids the combinatorial difficulty. 

The heuristic which we used is the assignment selection method based on the Support 

tab!». 

Why would */e expect the method to work? The hypothesis is that a satisfying global 

result involves some combination of good local fits, and that these are reflected in the 

Support table well enough to £uido the sequence of assignments adequately. Wnether 

the hypothesis is correct in a particular context depends on a great many contingencies 

involving both the content of the Slate and the content of the chunk. The chunk must 

somehow "depend on the right things," and the Slate content must be developed enough 

so that the right informat on is present and suitably represented.   It seems reasonable 

■ -—•    ■ ■   -   -  -  —■■■*- -"*' 



~"^ ■'•l"   ■ **mwm^mpM.mi    i i i ^■■•Wi^^nwp 

13-21 

to expect that we can assimilate effectively this way if the sequence of chunk mappings 

can be made to represent small steps of induction on givsn information. 

In order to understand the use of the Support table, we examine the rules for 

assignment selection in detail to see how altering them affects the results. Assignments 

are then chosen according to the following 5 rule;.; 

1. Assignments are tried one at a time m descending order of 
support. 

2. An assignment with zero support is never tried. 
3. No token is assigned more than once. 
4. If the sum of the support values of the successful assignments 

does not exceed a preset threshold, then the attempt to map the 
chunk fails. 

5. Any successful assignment Is retained.« 

SUPPORT AND ACCEPTABILITY 

The primary influence on the acceptability of the result is the choice of the local 

measure used in the computation of the support matrix. The Support computations can 

be regarded as perfect for the machine code tasks, the oriented version of the Neckar 

Cube task, the parsing task and Bower's task, since the first encounters of chunk and 

* These rules are complicated somewhat for chunks which have been previously mapped 
into the Slate, as described in the section on remapping. However, the uses and efrects 
of the Support heuristic are the same in both cases. 

-a-MBajUaia 



13-22 

graph produce mappings in «hich all of HK  intended correspondences of graph and 

chunK tokens appear in the result graph, pnd no spurious correspondences appear. 

\A/e have varied the support table content in a number of situations in order to judge 

the sensitivity of the result to the rules mentioned above. In particular we would like to 

know the qualitative importance of the emphasis on constants, the avoidance of 

zero-support assignments, the threshold requirement on successful mappings and the 

differences from task to task in the chunks and input graphs used. 

Three conditions were tried. In the first condition, the support table was replaced 

by a random table which had a non-zero support value for every possible pair. This 

was tried on various Necker graph states and on several of the machine code 

assimilation examples already presented. The results were always qualitatively the 

same: 

1. Any chunk could be mapped into any graph soMehow. 
2. Several of the correct token correspondences were missed. 
3. Tokens which should have mapped onto new tokens in the Slate 

were mapped onto existing tokens. 
4. Several tokens were added to the Slate to represent entities 

for which tokens were already present. 

This was in a sense a maximal perturbation of suppcrt since it simultaneously- 

disturbed the occurrences of zero, the differential response to constants, and the order 

relations among pairs. The wholly unacceptable result shows that something about 

support is vital, but fails to show what the v tal part is. 

---          i 



'■—   ■-"     ■ ■■   '■ ■ 

13-23 

A second condition varied the degree of the emphasis on constants, comparing the 

normal value of 20 with values of 1 and 0.   For the latter two conditions an acceptance 

threshold of 2 rather than 40 was used.   It turned out that the first two examples tried 

nearly span the spectrum of possible cases.   For the first mapping of the Necker Cube 

task,  the  results were entirely independent of the value of the score of arcs on 

constants.   We can see from the graph why this is so.   (See Figure 11.4).   In terms of 

their use of constants, all of the corners of the cube are alike.   It is the different ways 

in vhich the relations "is over" and "is left of" relate the corners which distinguish tiem. 

There are enough arrs on the face vertices to ensure that they are mapped before the 

corners.   The entire result than is guaranteed, provided that the front face token of the 

chunk does not get mapped onto the back face to'.^n in the Slate.   This lepends on the 

support computation in the ordinary case and on a fortunate order of discovery under 

this modification. 

A contrasting case concorns (the first Bliss example first chunk.) If the emphasis on 

constants is zero, then all of the support values are zero, since no two-token arcs of the 

chunk correspond to any in the Slate. All of the support information is in arcs on 

constants. Any non-zoro constant emphosis, with a proportional threshold, will yield the 

same correct result, 

A third condition involves the state of the same example in which the first mapping 

has succeeded normally and a second is to be attempted. Using a constant emphasis of 

1 was a sufficient disturbance to allow a chunk for loop control (a construct which was 

not present to map in. 

 ■      !■ -    — 



1    - wmmtm 

13-24 

The way which it mapped in suggests some simple ways in vhich the use of support 

could be improved. Examining the graph, it turned out that the Slate content before 

mooing and the par* of the graph representing the new chunK had no arcs in common. 

The two parts had two tokens in common which gave enough accumulated support to 

satisfy rule 4 above. This cc id not have happened if constant emphasis were <f0, since 

that would in effect require tHt there be arcs on constants in common. Since rule 4 is 

intended to eliminate cas*s of inadequate overlap of the Slate graph and the chunk as 

mapped, a substitute rule which accumulated realized overlap rather than potential 

(support) overlap would be preferable. 

Aside from this bug, can we find examples of chunks which would map improperly 

because of the demotion of constants? Consider any three-letter word chunk being 

mapped into the input graph produced by three successive "noise" events in the noisy 

sequence retention task.   The input graph carries the form of the sequence but does 

not bear any evidence favoring any particular word.   The two arcs on "precedes" would 

satisfy rule 4 and thus allow the three-letter word to map in.   It is reasonable to reject 

this mapping simply because the population o* words having the same form (sequences 

of letters) is large, whereas the population having the same constants in order is much 

smaller.   The same sort of mismapping would occur on sequence of instructions having 

only  mutual  references and order specified, and not the opcodes.    It seems quite 

plausible that a wide variety of different program control structures would yield the 

same form, whereas the use of particular opcodes is much more specialized.   So we 

would reject mapping of the control structure chunks into such a g.aph as being 

inadequately evidenced on the same grounds. 

- M^ JBUfeMMl   -* 



*-~^*mmmmmmmimmimmFm*r^^m'^~'^m~^mrw~mmmi^m*^mm^*^^^m~mm    «^x^^^^^^apiapvi^nv-xiiiii  in IMILI. i ■ ■ JHUP i II> .........   ^ 

13-25 

We thus see that emphatis of constants is vital to both the efficiency of finding 

mappings and correctness of the result. 

tFFORT EFFECT«; OF THE SUPPORT HEURISTIC 

We can evaluate the support heuristic in terms of the amount of effort which it 

requires to do its job compared to various references. The job is to select a set of 

assignments which yields a high proportion of judgments of reasonableness by the user. 

The space in which it selects is the set of all sets of assignment pairs which obey the 

rule that a token is assigned at most once. 

The first thing we notice is that this space is combinatorially large, even for small 

problems.    For n tokens in one graph and m in the other, the number of possible 

assignment sets is 

min(n.m)   /  \       /n\ 

§ (■) Ü" 
where the number of assignments to produce one member of the set is j. Counting 

ass.gnment operations is a convenient measure of the overall effort. The corresponding 

formula for the number of assignments Q necessary to serially examine the set of 

assignment sets is 

m i n (n, m) 

a-      Vif)   (1   1- 

 i   "— 



K^= >•  ■ ■ ■ 
  —— 

13-26 

For the small examole used to illustrate support table computation, Q > (7 * 10T8). 

Other examples in this thesis have much larger values of Q. 

Q is a kind of upper bound reference for evaluating effort, since it expresses the 

number of assignments of a simple program which is sufficient in principle to do the 

generation part of the effort (but which does not evaluate). 

A second reference is the number of assignments which achieve the correct answer 

directly. This is a lower bound on effort. The problem of selecting an acceptable set 

of assignments and the problem of deriding th«t no set of assignments is acceptable 

require different amounts of effort. It turns out that our efforts to minimize one have 

also tended to minimize the other. 

We would like to evaluate the Support heuristic in isolation to understand how it 

affects the effort requirement of the system. However, the selection process is 

organized so that the support table, the assignment operator and Uie assignment 

selector operate cooperatively. The support table acts as a generator of assignments 

and the ASSIGNER as a filter, and we agree to accept the set of assignments based on a 

threshold criterion. These three interact in the total effort, and so we will evaluate 

them together. 

The effort requirements of a representative case, the integer sum program 

previously introduced, is shown in tables 13.5 and 13.6 below. 

Chunks Accepted 

Count Time 

10 39 

--■ - " - - — - • - "■ 
^  



■■^»■»^■^■•»■^««»»■^■■■"•""•"^^»«^■»WW"»"""»«"""'""""i"    !■     »iiipiiii^i  an 

13-?7 

Chunks Rejected due to Remapping 23 155 
Chunk"- Rejected for other Reasons 4 16 

20 6.3 
126 2.2 
227 81.6 

Total Count 37 

Table 13.5 - Mapping Efforts by Chunk Fates 

Count Time 

Successful Assignments« 
Assignments Falling due to Remapping* 
Assignments Failing for other reasons« 

Total Count 373 

Table 13.6 - Mapping Effort by Assignment Outcomes 

We see that there are few successful assignments, only 20 to successfully map 10 

chunks and re,"* the others. Since there aro many more than two vertices per chunk, 

we see that forced assignments are very effective as a means for avoiding search for a 

suitable permutation of tOKens. The effort required to reject chunks from remapping in 

places already mopped is substantial. Even so, the basic purpose of the support 

heuristic, to limit the search for a permutation of tokens, is fulfilled, since only about 10 

assignments per chunk are tried. 

« These do not include "forced assignments." 

— -       "-      - -    '  ■■ -  -^-.    ...   ■..._...■ _   ...       . -    .        —- ^~M —-J>-.  .. * m~k A 



mmmmmm ■■"   "   

13- ^'8 

We thus conclude that the support heuristic and the forced assignment heuristic are 

effective means for limiting the effort of graph matching. 

When serial input information is being assimilated, it is possible to include some 

vertices in the Slate which never are part of an/ successful support computation. This 

"anticipation" effect can drastically reduce the effort of assimilating redundant 

information, making it more nearly proportional to the input information rate rather than 

the input event rate. 

REMAPPING OF CHUNKS 

After a chunk has been mapped into the Slate it is necessary to prevent mapping 

the chunk into the same place again. At the same time it must be allowed to map into 

oU.er places which may or may not overlap the first site. For example, consider the 

chunk for case statements in the machine code task. There are disjoint sets of vertices 

onto which the case statement chunk must map, one for each case statement in the 

source program. The chunk maps several times onto each set. 'n each set, the chunk 

maps once for each case section in the statement, with th    owrng of one vertex 

There is a bookkeeping relation, 'maps onto", which is used to keep track of past 

and current successful assignments, in query memory and the Slate respectively. When 

a chunk mapping is started, each attempted assignment is checked to determine whether 

it  has  been made before.    If a previous assignmei t on the same pair exists, the 

. 



mmmummmmmmm 

13-29 

assignment fails in a special way called refailing. The mapping algorithm is altered so 

tnat the target t^esho'd of accumulated support is reduced to the score of one arc 

containing a constant. Further refailures are treated as failures. However, if a 

succecitui (necessarily new) assignment occurs, the support table is reinitialized, the 

successful assignment is retiined, and no further testing for previous mappings occurs 

during the processing of the chunk. The previous threshold of acumulated support is 

reapplied. 

The effect is that the system is forced directly to find one new way to map an arc 

containing a constant. If none is found, the effort to map the chunk fails quickly for lack 

of support. 

Once a chunk has been mapped into the State, only the query formation process will 

keep it from being presented repeatedly for remapping. The filtering effect of the 

query formation process is inadequate for these purposes. This leads to a large amount 

of processing devoted to rediscovery and rejudgement of previously discovered chunks. 

This processing is avoidable. Chapter 15 discusses the details of this processing and 

suggests some more efficient methods. 

SUMMARY OF RULES OF EVIDENCE GOVERNING CHUNK ACCEPTANCE 

This section describes the basis on which chunks are rejected or accepted for 

mapping into the Slate. Those rules dotermino what is regarded by the system as an 

acceptable change of state of the Slate.   Since the effect of choosing not to consider a 

- 



wimnmmry**i^^m*^w*K*^ 

13-30 

chunk i* equivalent to the effect of rejecting the chunk after consideration, all of the 

means by which selectivity .s introduced are discussed together. The selective acts 

occur in four activities of the system which have already been introduced: query making, 

bulk memory search, chunk ranking and mapping. 

1. Selectivity in constructing the query graph - 

The query graph is constructed by copying the one-arc neighborhoods of particular 

vertices into query memory. The vertices are tokens which are selected as follows: 

Knowledge of the number of successful mappings onto each vertex is maintained by the 

system. If this number is below a threshold value for some token in the Slate, then that 

token neighborhood is copied. These vertices are called query-class vertices. The 

value of the threshold is 2 for all of the experiments except the machine code and 

Necker cube tasks. For the latter tasks, since the number of correct mappings onto a 

vertex has no intrinsic limit, either tho threshold is set very high or (equivalently) a 

queryless form of the interpretation operator is used, letting the entire Slate content act 

as the query graph. 

The values used for each task are high enough to access all of the chunks of 

interest. Thus the effect is to keep already-interpreted parts of the Slate graph out of 

the query for efficiency.   Processing is focused on the unexplained parts of the graph. 

- -     -- - - - ■-  --       -    -  ___^_^^^— 



■-r i pa m^    m ppww^—    ■    ■ 

13-31 

The mechanism it not used in • selective way. 

2. Selectivity in Searching Bulk Memory - 

The search of brlK memory uses the constants in the query graph as starting points. 

All chunks having at least one constant in common with the query graph are tested 

Acceptance it based on having two arcs containing constants and one other arc in 

common (up to substitution of tokens.) 

3. Selectivity In Chunk Ranking - 

Chunks are ranked by the number of difforont censtants which they havo in common 

with the query. Chunks having only one constant in common with the query are 

rejected, rather than being ranked. This element of selectivity appears very similar to 

the requirement during search that two ercs containinj constants be matched. However 

it differs In not dealing with the relation names, and also in that the two arcs may 

involve the same constant. Despite the similarity, tha second filter rejects a significant 

number of chunks not rejected by the first. 

4. Selectivity In Mapping - 

Two related methods are used for rejecting chunks during mapping. Particular 

token-to-token correspondences are rejected because they have zero support or 

because they lead to inconsistencies. A mapping, consisting of a set of 

correspondences, Is rejected if it docs not have enough accumulated support or if it 

leads to inconsistencies after free vertices ue assigned to unmapped chunk tokens. 

Details of these processes ire found in the Support houristic sectioa 

■--■    - «^MMMMMMMMMMMtfM 



TASK PROCESSING 

CHAPTER 14-/ 

TASK PROCESSING 

There are two groups of operators in this set of three levels. One group is 

involved in all of the sequential input symbol processing tasks, including digit encoding, 

the interference task, and the parsing of clesn and noisy letter sequences. 

These operators were present in some form from the point at which the 

first of this group, the octal encoding task, was taken up. 

The second group implements the Neckar Cube reversal task discussed in chapter 

11. These were added after the system development was essentially complete. The 

table below identifies which controlling operator was used for each of our six tasks. 

Interference Task RECALL WORDS 
Digit Encoding REPEAT SEQUENCE 
Noisy Sequence f<EPEAT SEQUENCE 
Control Structure Discovery F\£GAi<D2 
Control Structure Completion REGARD2 
Necker Cube NECKR 

Tablo 14.1- Highest Operator For Eacn Task 

■  ■ 



"•- •' p w   ■-na*  11     in     ■  ■ 

14-   2 

OPERATORS FOR SEQUENCE TASKS 

Th«r»  ir« six MqiMnc* task operator«.    Thair nanws, levels  and dependency 

relations ar» ahown in Figure 14.1 . 

Hark 

Repeat  Sequence 

Rega  d Seqcheck      Donecheck.    Outre&j 

Figure  14.1   -  Operators For Sequence Tasks 

These operators work as follows: 

REPEAT SEQUENCE 

The top operator, REPEAT SEQUENCE, is invoked for the two sequence repetition 

tasks. It relies entirely on two operators, EAR and STRIVE, wnich it calls in alternating 

sequence, starting with EAR. REPEAT SEQUENCE has a goal of receivinj and repeating 

back a sequence of symbols. It receives one symbol from the external source each time 

EAR ia Invoked. The symbol la given its own chunk in STM, and, as a side effect of 

receiving the symbol, an attempt ia made to chunk the resulting STM content. 

- ^hMMHMM «.^^^■■■■■MMMMBi 



14- 

STRIVE is called upon each completion ot EAR. It tests whether the current state of 

STM represents a complete sequence. If so, it prints the portion which it can recover 

from STM and sends a completion signal to REPEAT SEQUENCE. 

RECALL WORDS 

The operator RECALL WORDS is a minor variant of REPEAT SEQUENCE which acts 

similarly but gives an ordered report after termination of the sequence. Since the 

requence may be incomplete, it reports by first finding the beginning of the sequence (if 

it is present) in STM and reporting successive symbols. If tins succession does not 

terminate at the end of the sequence, it then locates the end and reports (in forward 

order) the successive symbols of the fragment uf the sequence found at the end. Any 

o'her remaining symbols in STM must be in isoldted middle fragments of the sequence. 

They are not reported. It inserts "-UH-" inio the sequence presented to the user under 

4 conditions: 

1. It cannot find the sequence bejinninjj. 
2. It cannot find tho next symbol at a non-final point in tht sequence. 
3. It cannot find the symbol for a tokun which is part of the sequence of to: ens 

having symbols. 
4. It cannot find the sequence end. 

EAR 

EAR calls on operator HARK to {jet the external -ymbol and put it in place as a 

chunk. If the symbol was anticipated, no chunking is attempted. Otherwise, REGARD is 

called to interpret the current Slate contunt. 

  - ■ ■ ■ 



14-   4 

Under •xUrnal control, EAR may be directed to call REGARD only if the number of 

available chunks ia below a preset threshold. If one or more chunks is mapped into STM 

by REGARD, the Incoming chunks will usually absorb more than one chunk in the Slate, 

Increasing the number of available chunks. For example, sovoral one-letter chunks may 

be absorbed Into a word chunk. 

STRIVE 

STRIVE relies entirely on 3 operators to do its work. First, it calls on operator 

SEQCHECK. SEQCHECK Is a dummy operator which does nothing. It was expected that 

some verification and correction of Slate content would be performed after the 

accession of new chunks based on the special non-chunk task-dependent knowledge of 

what a sequence should be. However, the need did not develop on these tasks. Hence 

SEQCHECK serves as a place-holder indicoting whero wo think such operations belong. 

The second operator called is DONECHECK. DONECKECK tests for the presence of a 

completed sequence In the Siato. If thj crcs roprosonting sequence termination ore 

present, STRIVE calls on operator OUTREAD to delive' as much of the sequence as it cen 

to output, and to mark those symbols in the Slate as already spoken. 

HARK 

HARK interacts with the external Interface of the system to receive a symbol of the 

sequence, which must be a vertex name or a special symbol "QUIT." In the latter case, 

arcs representing the completion of the sequence are stored in the token representing 

the previous symbol received. HARK works directly with the low level operators to 

modify the graph.   The effect of "QUIT" is roughly analogous to representing detection 

■'—"  - --■ —      ..—^...-.^^^ ^ ..~u^^u***~~~^          ^^^.^^^.^ ^^^^^^..^^^a.,^—^y^^»^. 



i  "■■■■■" ■■■"'■'    '        ■i^»p»    i ii i.jii-1-ii.-P..i-. .-.i-i.        v......   ....     ..-——.  ■   •  ••n a mmtm\^m9mmumfmim        ■ 

14-   5 

o( downward inflection of a previously heard symbol. 

SEQCHECK 

SEQCHECK has no effects, as noted above. 

DONECHECK 

DONECHECK tests for a particular completion arc which is stored when the quit 

symbol is received.   It uses only low level operators. 

OUTREAD 

OUTREAD is an operctor which takes the name of a sequence to be presented to the 

user, and prints as much of it as it can. It inserts "-UH-" into the sequence presented to 

the user under 4 conditions: 

1. It cannot find tho sequence beginning. 
2. It cannot find the next symbol at a non-final point in the sequence. 
3. It cannot find the symbol for a token which is part of the sequence of tokens 

having symbols. 
4. It cannot find the sequence end. 

DSETUP 

There is also an operator DSETUP which prompts the user for tho particular 

vocabulary of the sequence tasks. 

IMMaHMMWa^l ^AUMMIM, 



■•»•^^ -•»•^»■"WIPWWW^P• .fnwjmwm^mr^m^mm^^mm w^mmmmim   IIWI|III^IHII"IIM»IIIIIII*II 

14-   6 

OPERATORS FOR NECKER CUBE TASK 

The Neckar cub« task it the only one for which special single- tasK operators were 

developed.   The basic reasons for doing so wore: 

1. the need to represent attention input, 

2. the need to allow information ocquircd from the input intorfaco 
(rather than from chunkinj) to bo dolated as a result of later 
processing (in this case, a shift of attentioa) 

The features which distinguish the Meeker cube task operators are not specific to this 

task.   We expect them to reappear on a variety of other tasks involving attention or 

vlaual motion, at deacrlbed In chapter 17. 

The dependency and levels of the thrae operators used by this task are shown In 

tlgurel4.2. 

Neckr 

NKk 

\ 

Glance     Regard 

gure 14.2 - Dependenciee Among Necker Cube Taek Operatore 

Operatore NECKR, NKK and GLANCE are directly analogous to Repeat Sequence, EAR 

and HARK of the sequence group respectively.   NECKR processes the entire task, NKK 

———-- -               ■ -- —______^„ 



■ ■    ■" 

14-   7 

alternates input and interpretive phases, and GLANCE per. jrms a single input operation. 

The group is simpler because the task is non-terminating, so that NECKR never has to 

worry about quitting, and because there is no output part, the graph states which the 

system passes through being the objects of interest. Details of differences between 

the treatment of this task and the treatment of other tasks are in the description in the 

chapter on the task. 

OTHER OPERATORS 

All of the operators of the Slate system have been described above except those 

used in initialization and debugging. Every level has an operator called "Clear," which 

clears its storage and the levels below. 

TASKS WITHOUT TASK OPERATORS 

There are no operators for the machine code tasks. These tasks were performed 

by simply putting the correct graphs into the Slate and the bulk memory and calling on 

the Regard2 operator. The result graphs for these tasks are the final states of the 

Slate. 

MM.^kMBM_MMMaa ■ - ■ MMMM^M 



.... .1-. .   . twmmmmimiw -   — .—    ..<■< 

SYSTEM USE OF TIME 

CHAPTER 15  I 

This chapte»- presents a snapshot of the current state of the Slate system and its 

use of time. This is a view of the system which is relatively independent of the other 

kinds of descriptions in the thesis, and thus is useful for understanding the system. It 

also turns out to be useful as a basis for considering system performance limits, 

changes, and understanding tho nature of assimilation tasks. 

Time usage '% sensitive to many details of system implementation. We will see 

below that the current system is not representative of wnat can be accomplished in the 

time actually used. Since almost all of the system time use on some problems is 

avoidable, the use of time provides a better insight into potential improvements than 

into ultimate limits. 

A detailed model of time use for one task is first developed and projected to 

asymptotic large-task behavior. Methods for avoiding particular components are 

described and their effects modeled and used to develop some expectations for other 

assimilators. 

Time information was gathered by special programs available for timing Bliss 

programs, using the 10-micrcsecond resolution clock which is part of the CMU PDP-10 

computer. The basic unit timed by these programs is a Bliss routine. Information is 

available on the number of calls, the amount of time spent in the routine and the 

cumulative amount of time spent in the routine and those which it calls. 

.   . 



wrr* 

15-   2 

A MODEL OF TIME USE 

In order to develop a more detailed understandirj of time use we have selected the 

control structure discovery task for analysis, using the first major program example from 

chapter 9 as a representative case. 

Equation (1) below represents the basis categories of time use. 

Total time used ■ Search time ♦ Ranking time ♦ 

Mapp ng time ♦ Unaccounted time      (1) 

OR 

T-S*R*M*U (1)» 

For that example we have the values in m Table 15.1 . 

s- - 147. 
R- -   67. 
M- -787. 
U- -   27. 

SEC- 1007. 

Table 15.1 - Time Use in Discovering Control Structure for 
the Program in Figure 9.1 . 

* Query preparation time is zero because query preparation is omitted by the REGARD2 
operaior. 

-      .-.-..--■          ■    -■ ■ --       -  ■   - ■   _ ^   .-   ■     -^ -           ■ --    ——^^^^M-.aatof MfcJt^b^lMl^ii 



15-   3 

We can break down the largest element, M, as follows: 

P Preparation of Support tables 127. 

Mapping chunks, by Outcomes: 

F First-time fjilure 57. 
FF       Remapping failure 49/J 
G        Successful mappings 127, 

787. 

M - P ♦ F ♦ FF  ^ G (2) 

T-S*Rt-P*F*Ff*G*U     (3) 

All of these terms are sums representing many events. We can break them down to 

event counts and average times. To do $o it is helpful to define several event count 

terms: 

Count Term 
Symbol Interpretation Example Value 

c (chunkings) is the count of successful 10 
mappings into the Slate. 

s (sexches) - c ♦ 1 since one final 11 
search fails to lead to a successful 
chunking. 

d (discoveries) average count of discovered 8.2 
chunks from a sirgle search. 

v (variety) number of different chunks 6 
which map successfu ly in the 
course of the problem. 

Table 15.2 - Count Variable Definitions 

A 



1 '   ■■»■ iinpaiiiji i ■   ..     , -m 

15-   4 

So we can reexpress the terrr.s Df (3) as follows: 

Symbol 

fl 

t2 

t3 

f 

t4 

m 

Interpretation 

average bulk search time 

average time to compute a rank 
for one chunk 

average time to prepare a Support table 

average count of first-failing chunks 
per search 

average time to perform a 
first-time failure 

average number ci chunks which refail 
per search 

average time to refail a chunk 

average time to succeed in mapping 
• chunk 

Tfvs yields, for the :*rms of (3): 

S -s tl 
P - s d t3 
R - s d t2 
F-sf t4 
FF - s r t5 
G-c t6 

Equation (3) under this representation becomes: 

T - s (tl ♦ (d (t2*t3)) ♦ f t4 ♦ r t5)+ c t6 (4) 

  -    ._H HMMMM 



15-    5 

There is a simple view of the system's operation which explains some of the values 

above. Recall that when a chunk is mapped into the Slate, a kind of copy of it is made 

in the Slate. This copy is part of the content used to decide what chunks might map 

well into the Slate on all further searches. Since the chunk corresponds to its copy so 

well, it gets a very high rank. As a first approximation, a mapped chunk outranks all 

chunks which have not yet been mapped. Then the mapper must consider all of the 

previously mapped chunks before mapping any now one. For a particular chunk about 

to be mapped successfully, there are on the average half of the other chunks, (v-l)/2, 

which must be attempted first.   Under this model we expect 

r « (v-l)/2 

In the example, r - 2.1 and (v-l)/2 - 2.5, confirming the estimator. Observation of 

the chunk trial sequences also confirms the appropriateness of this approximation. 

PROJECTED TIME USE ON LARGE TASKS 

Projection of the system time use may be useful for a variety of practical and 

theoretical purposes. It provides an independent means for understanding both systems 

and tasks. The estimates below turn out to reveal much more about the potential 

successors of the Slate system than they do about performance limits. 

In order to project to large tasks, we use some of the characteristics of the control 

structure discovery task that distinguish it from others. The 17 chunks which we use 

represent a significant portion of the knowledge of Bliss control structures.   Variations 

 ■J^-„-^__-^, .—^_____^.__^_— ^„— 



•^m 

15-    6 

in the use of opcodes and melton of decrementmg loops, simple condit.onals and 

coroutme control mifhi double or tnple the number. Still it is small relative to realistic 

language tasks which might he p^ected from the Miller-lsard experiments, for example, 

where the vocabulary contams thousands of words. For control structure ident.fication, 

it ,s plausible that all of the chunks would be used m a single large program.. 

We denote this total number of chunks by a (all), and assume that all chunk, are 

„appable on the large task. We assume further that all chunks are able to pass the 

search tests at the beginning o' the task, so that d - a and v - a. We characterize 

the size of the task by c. the number of successful chunk mappings, and assume for 

convenience s - c and r - v/2. Under these assumptions, f - 0 since all chunks map 

somehow. We also assume that the number of tokens in the Slate is proportional to c. 

Then equation (4) can be written as: 

T « s (tl * aC.2 * t3 ♦ t5/2) * t6) (5) 

in (5). the part of the work retained in the result is represented by the successful 

mappings: 

Tu - s t5 

and the waste by: 

• W. tttlmttt thaUhtr« would be a chunk for each 5 to 10 inf ^,;on!;i^
h

t
e
ha

P
r

r°^;c
e
a
C! 

condition.    The examples above are deliberately richer in control structure than typ.cal 

programs. 

.. ■    -    - -  -   



15-   7 

Tw - $ (tl ♦ «(12 ♦ t3 ♦ t5/2)) 

All of tha search is superfluous since the outcome is constant. The term for which a is 

a factor represents three ways in which the entire knowledge base gets in the way of 

new mapping operations.« 

How do the time terms vary as the tJze of the task, c, increases? What is the 

asymptotic behavior of the system? 

In this asymptotic case (but not in the normal case) the search term tl depends on 

the number of available chunks, which we have assumed fixed. The ranking time t2 

depends on retrieval from the Slate of arcs containing the chunk's constants. Since the 

retrievals need access only one such ar: each, the time required to perform them does 

not increase with Slate content size. 3o t2 does not vary with increasing c. The 

support table size is proportional to the number of tokens in the Slate, and so varies 

linearly with c, causing 13 to vary linearly with c. The refailure time t5 includes 

rejection of all of the potential mapping sites for each remapping chunk, so it varies 

linearly with c.   Finally s - c varies linearly with c. 

The asymptotic behavior is to use time proportional to the square of c. Other terms 

are increasing in the approach to the asymptotic region, so that ovet shorter spans we 

would expect time use to increase faster than the square of c. 

* Of course, the selective parts that are superfluous in the limit are not superfluous on 
smaller tasks. 

      __   



.mmm     ,        -— 

15-   8 

FASTER METHODS 

Thit section presents a series of small changes to the Slate system which, in 

combination, would allow non-sequential tasks such ac control structure identification 

and the cube task, to be treated as sequential tasks, with an effective query making 

process and chunking confined to small regions at a time. 

The combination of changes can be regarded as an attention mechanism. 

First we must unravel the functional circumstances which led to the use of the whole 

Slate content as the query for the non-sequential tasks. Consider the chunk for case 

statements. Figure 9.15. Smco a case stütemont may have indefinitely many sections, it 

must be possible for this chunk to map into the Slato indefinitely many times, with all of 

the tokens except CS5 mapping repeatedly to the same places, and CS5 ranging over 

the sections. In order to .-ap in repeatedly, it must be discovered repeatedly, and so 

the tokens on which the repeated mapping takes place must be in the query repeatedly. 

The method previously described of counting to an adequate number of mappings on a 

token, cannot therefore bo uced to eliminate tokens from a query. Every token enters 

the query, and the query bocomes the Slato content. Note that this result doeb not 

depend on large-problem assumptions. 

The system does not understand the iterative way that chunks like the case 

statement chunk are used. If we were to permanently mark the iterating vertices of the 

chunks, then the Postmap operator could perform all of the iterated mappings at o^ce, 

smply by restoring the support for all iterated vertices after each successful mapping. 

Motice that in doing so we also provide a partial representation for the knowledge of 

 ■■ - ■ 



15-   9 

indefinite plurality.   We also have provided a basis for recognizing the situation which 

led to infinite looping on iterative chunks in the explication tasks. 

Given that all iterated mappings can be performed together, the method of counting 

the number of mappings onto a selected vertex can be used to locate incompletely 

mapped regions in the Slate. Thus the principal wastage described above, arising from 

reprocessing of chunks, is eliminated.« This is not a full solution for large problems, since 

such problems would start processing with the entire Slate content incompletely mapped 

and therefore part of the query. If we provide another means of limiting the size of 

query graphs and confining queries to connected local regions, then the bulk memory 

searches will be correspondingly small, independent of problem size. 

The system nas no methods which respond to relationships between chunks (except 

for the overlap which occurs after mapping.) Yet the chunks come in semantically related 

groups, such as the three for case statements which always map jointly. If there were 

a way of using such knowledge, the corresponding search effort would be significantly 

lower. 

None of these proposed methods reduce the generality of the system. 

The combination of the above methods would result in chunking of many tokens 

which never pass through the query process at all. For example, suggestion of the 

presence of a case statement structure at a certain place would lead to mappings which 

* We might also reduce such processing by recognizing the previous mappings during 
the search and discounting the overlaps appropriately. 

■ --   ..-.--—.—— M^^M^^^MBJ 



15- 10 

extended beyond the query to mdude all of the machme code which implemented that 

structure. For efficiency, the processing should properly proceed from existmg 

chunkings rather than broad memory searches, reserv.ng the query making process for 

beginnings and impasses. 

There remain in the projected system no operations within the mapping cycle wh,ch 

require time propc tional to problem s,ze. We therefore expect timt use to grow 

proportional to problem size rather than problem size squared. 

in the example, the time spent on the 20 unforced token assignments which 

succeeded was 2.07. of the processing time. In a sense this 2.07, includes all of the 

useful work. The need for many of these ass.gnments would be eliminated by Crated 

chunking.   A speed improvement by a factor of 100 seems to be a feasible goal. 

For tasks in whic^. exhaustion of the chunk allottment of the Slate is possible, there 

i. another kind of effort management wh.ch appears attractive. Chunking effort can be 

confined to conditions under which either: 

1. There is a real threat of loss of unchunked information, or 

2. The assimilated result is needed. 

We have evaluated this idea only informally. Under the STRIVE operator, there i« an 

mternal switch (named Lazy) which controls chunking effort relative tc a threshold. If. 

after an input has entered the Slate, there are more than 2 available chunk slots. 

chunking is inhibited. TNs often avo,ds the large effort required to chunk when there is 

marginally sufficient evidence in the Slate.    In a world in which, if we are patient. 

  ——'  



^^MOT 

15- 11 

redundant information for most recognitions appears, this heuristic would lead to large 

savings of effort. 

On some tasks, the system seemed to spend nearly all of its effort on full Slates 

containing margintl evidence. One new input chunk vould be processed, leading to 

mapping of one chunk from BulK Memory, with consequent loss of one other chunk, often 

a large expensive one. This seems to be a detectable Overload condition, in which there 

is a diminished return for chunking effort, in which chunking should be inhibited. It 

would be better under such conditions to have some slack, perhaps using 12 ch'1 ik Jots 

to manage the assimilation of about 7 items. Each new item could be chunked with low 

effort on an abundance of evidence. 

TIME USE AND KNOWLEDGE 

Several times during the J 'olopment of the system a method was found \ ''ich :r!ade 

the system both more a«v. . jnd significantly faster. The forced assignment heuristic 

was one of these. The introduction of the optimistic support sum was another. 

Similarly, the methods proposed above improve the representation and reduce time 

requirements.   The dynamic support suggestion has the same character. 

These surest a pattern. Use of some kind of previously ignored information about 

the structure of the assimilation task makes the rapid construction of correct results 

possible.   Slight increases in complexity yield large gains in system competence. 

■ 



Ifclll .<■ mmm^^mmmmmm 

15- 12 

What are the conditions for this continual openness to significant improvement? Why 

does it occur for some system problems and not others? Certainly there are varieties of 

task domains, with corresponding varieties of structuredness. The general assi^ilatiun 

task turns out to be a suitably richly structured task. 

The fact that the task is constructive rather than generate-and-test or 

enumerate-and-select means that added kn;.. vledge can be used to eliminate classes of 

false steps of construction rather than simply changing the nature of final stages. 

Keeping the task a constructive one seems vital to exploiting its structure effectively. 

Ths inherent redundancies in the input information of assimilation tasks is helpful. 

Somehow, given enough clues to the correct synthesis, some t'seable clues are included. 

There are numerous structural features of the assimilation domain which we have 

not taken advantage of at all. The number of such features increases as time, repeated 

experience, automatic chunk derivation and the like are introduced into the task. 

Experience in constructing the present system woula indicate that increasing ta^.k 

complexity will be met by increasingly complex, but much faster, methods. 

  — - ■       ■ 



 ■! ■      ' ' 

REINTERPRETATION OF THE SLATE SYSTEM 

AS A SET OF PRODUCTION SYSTEMS 

CHAPTER li-l 

For better understanding c( the Slate system, this section presents an alternate 

representation of the worK of the Regard operators. The system is represented as a 

set of interacting production systems. The general production system model fits well, 

with some striking variations from the familiar tradition of Markov algorithms, the Snobol 

family of languojos and other systems. 

A production system (ps) accomplishes all of its work by application of rules, called 

productions, having the form: 

CONDITION —> ACTION 

where the condition specifies a matching operatioi and the action specifies a change to 

be made if the match succeeds. 

We can describe a production system by answering five questions: 

1. What rules can be stated? 
?. Where does matching take place? 
3. Mow is a match of a condition part achieved? 
4. How doe* an action part act? 
5. How are productions selected for match attempts? 

  - -     M^MHMM 



mmm^^H^mr^^^mmr^' 

16-   2 

We describe the system in slightly idealized form below, in particular omitting details 

which we have not «ought to control in the Slate s/stem, such as the order of retrieval 

of arcs.« 

ORGANIZATION 

The entire Slate system can be regarded as a cascade of 5 subsystems as sketched 

in Figure 16.1 . 

The lower 4 parts correspond to the Regard operator. 

The finding of an acceptable set of assignments corresponds to the matching of 

condition parts of rules in the chunk ps, and storing the remainder of the chunk 

corresponds to the action. In the arc pair ps the defined interaction pairs correspond 

to condition part« of it» rule«, ttw storage of inference arcs to the action part« of it« 

rule«. In the relation ps, the productions correspond to the relational property 

definitions presented in Chapter 12, Figure 12.2 and Table 12.2 . 

The chunk ps delivers sets of arcs to the arc pair ps, the arc pair ps delivers 

augmented cats of arcs to the relation ps, and the relation ps delivers further 

augmented sets for storage. As an alternative to delivering a set of arcs down, either 

the arc pair ps or the relation p« may deliver a FAIL signal up. 

• A »y«tem that worked exactly as described below might be hard to distinguish from 

the one we have. 

—■   



^^^mm^mmmmm^mu^mm 

16-3 

TASK-SPECIFIC OPERATIONS 

i    T 
i    T 

CHUf^K PRODUCTION SYSTEM 

i   T 
i   T 

ARC PAIR PRODUCTION SYSTEM 

i   T 
i   T 

RELATION PRODUCTION SYSTEM 

i   T 
4   t 

STORER 

Figure 16.1 - Production System interfaces 

J 



16-4 

CHUNK PRODUCTION SYSTEM 

RULES: Tha rules are all defmed by interpreting our chunks in a particular way. Let 

Lc be the set of graphs obtainable by deleting some nonempty subset of arcs of a chunk 

C. For each member of Lc we will have a rule, and the set of rules derived from one 

chunk will be called a fam.ly, Fc. Each member of Lc is the condition part of one rule of 

the family Fc. and all of the right s.des of Fc consist of chunk C itself. The rules ere 

partially ordered: If A < Lc can be obtained from B < Lc by deletion of arcs, then B is 

higher than A. 

MATCH SITE: Matching occurs in the content of the Slate. 

MATCHING: The tokens of the condition parts are the match variables. Matching is 

successful iff tokens of the Slate can be substituted consistently one-for-one for tokens 

of the condition part to transform tho condition part into 3 subset of the arcs of the 

Slate. Within this requirement for complete matching, the selection of Slate tokens for 

the match it non-deterministic.» 

• Non-deterministic selection is selection of one item from a set of alternatives in an 

c3sp ^e'e's) ^f^ "A '" ,h,S CaSe are SetS 0f chunk-token to sll-toke correspondences.)   If   a   non-deterministic   selection   leads   to   a  failure   the   failina 

srsiirr? uom
t r

set 8nd another k ,ried The c^ «^«£5 set is exhausted or a non-failure occurs.   Thore are three non-deterministic selections 
m this description. .1! located in the chunk production system.    ™ermin,S,,c select'on« 

i 

^■b^aHMBiMAM ■    ■    -       -     ' -■ 



imim m\     i -^ 

16-5 

ACTION: The action is to deliver to the next lower ps the set of arcs of the chunk, 

after substitution cf tokens as follows: 

For   each   token  substituted  for   in   the   matching   process,  its 
substitute. 

For each other token, an unused token. 

PRODUCTION SELECTION: Selection of families is non-deterministic. Selection of a 

production within • family is nondeterministic among the highest rules in the partial 

order which in fact will match. (This reflects the fact that the system uses any 

consistent support.) 

ARC PAIR PRODUCTION SYSTEM 

RUL'iS: There is a rule which corresponds to each defined interaction of the Slate 

system. (See the description of Lovol 3 in chapter 12.) The condition part is a 

connected graph containing one or two arcs.   Thu action part is a single arc or the FAIL 

symbol. 

MATCH SITE: Matching occurs in the union of the sot of arcs delivered to the ps, the 

Slate content and the set of arcs produced by action rules in this ps. 

MATCHING: All rules are applied in all possible ways to produce additional arcs, and 

to the augmented set, recursively to completion. (Completion necessarily occurs since 

no vertices are added, ind the set of relati< n names Is finite.) The variables of the match 

are all of the vertices found in the condition parts of rules. 

__^_M-^^_^M^M 



'  irr- 

16- 6 

ACTION: The «re wnich is obtained by substituting the values of the vertex variables 

of the condition part match Into the action part arc is added to the set. If any rule 

having en action part o' FAIL matches, then the action of the ps is to signal FAIL to the 

next higher ps. Otherwise a set of arcs is delivered to the next lower ps, consisting of 

the arcs input to this ps and the arcs produced by the action parts of rules. 

PRODUCTION SELECTION: All productions are selected. Each is matched with its 

ver.ex variables assigned in all possible ways. 

RELATION PRODUCTION SYSTEM 

The relation ps has the samo description as the arc pair ps, with one difference. 

One of tho arcs in the condition part may be marked as denoting a path. If VI R V2 

denotes a path, then It matches a set of two or moro arcs VI R a, a R b, b R c, _ y R z, 

iRV2. 

The principal differences between thtsa two systems in the Slate system is that 

each rule of the relation ps always involves only one relation name, and that the relation 

ps is compiled whlo the arc pair ps is interpretive. 

If the relation ps delivers a set of arcs they are stored in the Slate. 

■ ■ ■ 





. i       >v.      <.ip  mimmi 

16-8 

Why does the description have such a strong parallel appearance when the design 

and implementation were forced to be serial by the single instruction stream of the 

available computer? 

The char.der of the operations is such that order of events is of little importance; 

what happens at one vertex of the graph and what happens short distances away are 

nearly always independent. When they interact, it is not in an order-dependent way. 

The system accumulates evidence for its assertions, and what matters is how much 

evidence supports a set of assertions rather than how the eccumula-.ion was compiled. 

Because the order of accession of arcs into a graph is not represented in the form of 

the graph, it is permissable to vary that order freely. 

We conclude that the cnaractei of the results of chunking, sets of assertions about 

the data being chunked, permits many parallel operations. It is a feature which rests 

ultimately on the character of the task rather than on constraints of the available 

methods of performing the task. 

We have been led to this conclusion from an analysis of the processor rather than 

from evidence for seriality or parallelism in people's acceptance and rejection of chunks. 

Whether the order invariances of the task are represented by multiple simultaneous 

operations when people perform such tasks is an entirely different question. However, 

it would be reasonable, in a search for psychological parallelism, to seek analogues of 

parallel operations known to be sufficient to perform the task, such as those indicated in 

the production system representation of the Slate system. 

-—        -      -    -        -       -    -       —   -        - -■ - ■     --         -    ■   ■ ■     ■   —-—        - -■ ^    ,,        .    ^ __^, ■ -■ ■  ^-„^■„.■^^k—^^»„L^-^^i 



i   «i  ■  "mir-mm—** 

16-9 

Because all of Jhe chunk productions are completion productions, this set of 

production systems is strictly weaker than the conventional types, which have the full 

power of Turing machines. Arcs are nevar erased in this model, since they are 

delivered in sets which are either stored rr abandoned on a FAIL signal. 

NEWELL'S PRODUCTION SYSTEM MEMORY MODELS 

Since we have roconstrued the Slate system as a set of production systems, we can 

compare it to the family of human performance mod'" J constructed by Allen Newell for 

cryptarithmetic, stimulus encoding and other tasks.   [NS72], [N73].    In these systems, 

STM is a small set of linear expressions, and the productions which match and manipulate 

'hese expressions constitute the LTM.   As in t!ie Slato system, each STM element has a 

significant amount of internal symbolic structure.   The principal contrast which causes 

many of the details to diverge is that Newell includes the task control information in 

STM, whereas in the Slate system it is in programmed task-dependent operators.   His 

LTM content thus resembles a collection of Snobol programs much more than do the bulk 

memory chunks of the Slate.   In the terms used in other comparative sections, Newell's 

match method« (like many rthers and unlike the Slate system) perfotm complate matches 

rather than partial matches.   The fact that one uses expressions while the other uses 

graphs makes the representations appear to be quite different.   Newell's productions 

must address a different mix of problems in order to perform task control. 

      -      ■ ■      — -      ■-      -- -— -      -        - ■ -■--.- -■   ■            _.^_J^_^_^M^.—MM^^— 



"   " ■ -■■ ■ ■ 

16- 10 

His representations include ar "absence of" operator which has no correspondent in 

the Slate system. Tie actions also include erasure of parts of STM content, which th.. 

Slate system never needs to do since all of its fam.lies of productions perform 

completion. These differences make some problems particularly easy for the Slate 

system because of its graphs, and others easy for Newell's systems because of their 

more general actions. On the other hand, mixing the knowledge base for assimilation 

with the knowledge of assimilation methods (task control) introduces complexities. 

The two differ in their approach to the problem of re-matching- Newell's productions 

alter the match site so that a production cannot re-match, while in the Slate system the 

match site is marked with information about matches at that site. 

The approaches to retention of active STM content also differ. The Slate system 

uses Inclusion of chunks in larger chunks, where Newell uses rearrargement of the 

sequence of STM elements. The most recently matched expression is moved to the 

front of the STM sequence, and all deletions for overflow are from the back. These 

mechanisms surely have different interference properties and different ways of 

representing rehearsal. 

Although both are interprable as production systems, the two systems represent 

very different approaches to memory modeling, each with considerable potential for 

further development. 

—— ■Mi .<______,___ MMMMMM 



ip-y ■— 

16- 11 

SUMMARY 

The Slata system can be represented as a set of production system without serious 

misrepresentation  of   its   processes  or  effectiveness.    It  is  seen  as  a  cascade  of 

dependent production systems which differ primarily in the localness of their fields of 

action. 

Some of the differences between this system and conventional ones are important to 

its effectiveness. 

The highost-level production system is responsive to degrees of 
matching. 

The use of partial match techniques results in productions being 
grouped into indivisible families rather than occuring singly. 

The use of Graphs rather than strings strongly simplifies nearly all 
of our assimilation tss^s. 

Operations on sets prodominote. 

Only completion productions occur at the highest level. 

This   representation   brings  out  the  strongly  parallel  nature  of   the  chunking 

processes and task.   Parallel processing appears suitable for assimilation tasks. 

--—  - -■           —■»»—-—^.- 



mm i ■          

litr»£SALITY 

CHAPTER 17-/ 

This chapter examines the prospective capacity of the methods used in the system 

to perform effectively on other problems. The class of problems of interest is the 

broad class of assimilation problems. We would HKe to be able to describe beforeh" xl 

the results of applying these methods to other assimilation problems. 

The general p-Mern of applying a problem solver to an assimilation problem is 

indicated in Figure 17.1 . 

given: EXTERNAL PROiLEM REPRESENTATION 

do: TRANSLATE 

which yiolds: liWTER vlAL PROBLEM REPRESENTATION OF SOLVER 
I 

do: APPLICATION OF PROBLEM SOLVING METHODS 

which yields: INTERNAL RESULT REPRESENTATION 
i 

do: TRANSLATE 

which yields: EXTERNAL RESUT REPRESENTATION 

Figure 17.1 - Step« in Applying a Problem Solver 

   - - ■ .Mua-M^^H 



—Ä^- 

17-    2 

The generality of particular assimilation methods can be considered ir terms of the 

limitations imposed on the three »vinds of action indicated in Figure 17.1: translation in, 

method application and translation out. 

These actions are instantiated in our tasks as follows: 

a. Translation of tha external problem representation into Slate 
system  internal roprüsontdtion: 

There are three parts here: 
1. Invention of the relational code to bo used internally. This 

includes selection of names for relations and constants, selection 
of relatirnai properties. 

2. encoding of the knowledge into chunks. 
3. Encoding of the given assertions into input graphs. 

All three of these are currently manual processes. 

b. Application of the problem solving methods: 
All of the tasks which we have approached with the Slate system 
depend primarily on the chunk mapping operator for success. 
Thus there is essentially one n.jtnoa being applied. There are 
several freedoms in its application, the principal ones being 
determination of query content and the setting of acceptance 
thresholds. 

c. Translation to external representation: 
This is a manual process which has been made very simple and 
straightforward by the dosign of the internal representation. 

Five questions are of interest in judging the generality of any assimilator system: 

1. How easy Is it to add new tasks? 
2. How much of the system is used in common across several 

tasks? 
3. What task-dependent information is built into the system? 
4. To what extent does the system's generality really rest on the 

process of renresenting problems to the system rather than the 
system operati ns? 

5. What are the known limitations of the system? 

■ - -  —- — 



17-   3 

EFFORT OF ADDING TASKS 

The Slate system was developed on a variety of tasks, and there were changes in 

the principal operators as each new task was added. We would like to anticipate the 

magnitude and character of changes that might be needed for further increases in scope. 

We have informal evidence that the Slate system is capable of accepting some new 

tasks with modest effort: 

1. The changes necessary to add the Necker Cube task to the 
system's repertiore were small (a few days of programming and 
testing) mainly confined to the user's input area. The operators were 
minor variants of those v. existed for assimilating noisy letter 
strings. 

2. Each task addod to the system took much less effort to 
achieve than the previous one. 

TASK-DEPENDENT INFORMATION IN THE SYSTEM 

We are concerned here with two kinds of evidence for generality: 

1. A system (or parts of a system) is likely to be useful for new 
tasks if it is already useablo on a diversity of tasks. 
2. A system is likely to be useful for now tasks if it does not rely on 
specific features of previous tasks in an essential way, that is, if there 
is relatively little task-dependent information built into its methods. 

We deal with both of these related kinds of evidence in this section. 

- -   - 



17-   4 

Many of th« other existing programs for assimilation tasks are one-tasK programs. 

For example, the SEE program by A. Guzman assimilates only line drawings of groups of 

blocks, given In a coordinate representation. [G68] Some or all of the knovJpdge of the 

task is built into the processes which operate on the given information. In order to 

have a general program for tho domain, any tasK-specificity must be included in such a 

way that it does not interfere with the processing or effective organization of tasks for 

which it is inapplicable. One way to accomplish this is to organize the program into 

independent sections, one for each task, as indicated in Figure 17.2 . 

Task Selector 

i i i 
., 

Task   1 Task 2 ... Task n 

Figur* 17.2 - Big Switch Gonerality 

This approach is sometimes called the "big switch" approach because it relies on a 

single task selector to achieve indepandenco of methods of task performance. It does 

not provide much insight into means tor approaching new tasks, since it offers almost no 

resources for any new task to be added to the repertoire. 

Organization of a «ystem so that it has big-switch generality indicates only that 

several specialized methods are coexisting, not that significant spanning of a range of 

- >-«^ MMMMBMeiMIMM 



17-   5 

tasks has been achieved.   We will show below that the Slate system generality IK of a 

different kind. 

TASK DEPENDENCY OF DEFINITIONS 

The defined relations used in the tasks we have described, and their use across 

tasks, are shown in Table 17.1 and Table 17.2 . 

RELATION NAME 

appears before 
begins with 
ends with 
executes after 
finishes with 
fulfills 
expects 
is linked by 
has subpart 
identifies 
is a member of 
is left of(syntax) 
is left of(cube) 
is over 
li the address in 
is the content of 
is the function of 
is the opcode of 
is the source of 
is the symbol of 
is the side of 
is the type of 
is the value of 
maps onto 
precedes 
spoken after 
starts with 
has first part 
has second part 
has third part 

CLASS TASKS 

DIGIT LLTIER- NOISY MACHINE NECKER 
CODING PARSE PARSE CODE CUBE 

15 X 

1 
1 
15 
1 X X 

33 X 

53 X 

33 X 

3 X X X X X 

26 X X y X X 

4 X 

4 X X 

3 X 

1 X 

3 X 

3 X 

35 X 

35 X 

35 X X 

35 X X X 

35 X 

35 X X 

3 X 

36 X X X X X 

X X 

X 

X 

X 

X 

X X 

X 

X 

X 

X 

Table 17.1 - Relation Usage by Tasks 



17-   6 

CLASS COOING    PARSE     NOISY      MACHINE CUBE       SUM 

1 
3 
4 
15 
23 
26 
33 
35 
3^ 

INTERACTIONS 

* x             x             x x 5 
* x             x             x x 5 

xx 2 
x 1 

x 1 
x             x             x             x x 5 

x 1 
* x            x            x x 5 
x             x            x            x x 5 

X                  X                  X X 4 

Table 17.2 - Relation Class Usage by Tasks 

Only 4 of the 9 classes are not used on all of the tasks. Of the 30 ralations, only 3 

are used in all tasks. Thus the relational classes tend to be used over and over, while 

the relation names tend to be task-specific. Since it is the classes rather than the 

names which correspond to the fixed parts of the system, we can conclude that the 

relation processors are being used in a general rather than a task-specific way. 

The relation and vertex definitions are not part of the Htti system. They are 

created In a preliminary dialogue w th the user before the problem is presented to the 

program. The relation definition schema was not developed to meet task requirements, 

having been implemented before any of these tasks were taken up. Except for the 

classes for relations which map between disjoint sets, the classes used were those 

developed for a very different set of tasks by Elliott. His tasks were fact-retrieve! 

tasks representing airline reservation Information, organlzctlon form«, personnel 

Information, city location«, and others. 

  



17-    7 

The new classes added to Slate really represent a correction to EIIICM'S set, since he 

used some of his classes for mapping between disjoint sets: "is the head of" mapping 

personal names to organization names, for example. 

Elliott also found that the scheme provided more than enough classes for his needs: 

"Sufficient experience has not been obtained to know how useful each of 
the 32 permitted classes of relations are. Preliminary observations, 
however, would indicate that less than 10 classes categorize 90 per cent of 
the useful relations, several more are used rarely, and t>ome of the 32 will 
probably never be used. At least there are some classifications for which 
the author has never been able to find examples."* 

We can look for task-dependency using the commonalities of the set of tasks 

accomplished as a guide. The machine-code interpretation and explication tasks were 

chosen partly to exhibit some of the potential diversity of the system. The other tasks 

all impose various kinds of organization on strings of symbols. The machine cooe inputs 

are graphs with many arcs between vertices that are not adjacent by the "precedes" 

relation. Thus their input graphs ere topologicelly unlike those of the string tasks. The 

explication task is unlike parsing in that it develops the details to correspond to the 

abstract constructs. The subject matter is also from a technical domain which is not 

subject to the constraints on human speech. 

On the other hand, all of the problems deal with sets of qualitative (rather than 

quantitative) assertions which are interpretable without recourse to assertions which 

are not given. 

• Elliott, page 79. 

M^MMMatUuaMHHMMIMMMMHMIi 



■ 

17-   8 

The Necker Cube task is a special case in that it has its own set of driving 

operators. However, the task-dependency incorporated in these operators is only 

superficial. Since they all have strong analogous operators in other tasks, we need only 

discuss their specific differences, which all involve the relationship between prior input 

information and newly elicited input in'ormation. 

The central novelty in these ooerations is that new input information (about a corner 

being on the front face) can completely contradict older input information. For correct 

assimilation, the older input information and the chunk which it caused to enter the Slate 

must be removed. This it accomplished by causing each arc of input to be merged into 

the next assimilated chunk, then when another part of that chunk contradicts some 

input, the chunk it removed, and with it the old input. 

Is this kind of action specific to the Meeker Cube task? No. We would use the same 

strategies for a variety of other assimilation tasks in which the validity of input 

information was subject to decay or to refinement ov allocation for additional 

processing. Considering other visual assimilation problems, this approach seems 

appropriate for: 

1. Assimilation through the fovea what has previously  been 
assimilateo through the periphery. 

2. Assimilating scenes which include motion or change.« 

Both of these are recurrent conditions. It is therefore reasonable to regard the special 

features of the Meeker Cube operators as representative of general features for which 

we happened to have only one task. 

M« 



17-    9 

In summary, we h«ve found serious task dependencies only in the section cf the 

system which holds the task-dependent operators. The system is flexible with respect 

to topolOßy of input graphs and the specific content of the knowledge rt oresented. 

The definition methods used span a variety of kinds of subject matter and logical form. 

The relational classes are broadly useful, with some classes being usable for several 

different relations in each task. Some tasks require that there be parts of the system 

which reflect their particular structure, and these, of course, will be task dependent in 

this system, since it does not provide any general representation for the goals, methods 

or other information structures which might be used to define tasks. There seems to be 

i.o reason to think that this system would be incompatible with r general task 

representation structure such as GPS. [EN69] We expect that the methods used in the 

Slate system would serve effectively as tools in such a system. 

BULK OF SPECIFICATION 

It is well established that any computable function can, in principle, be computed by 

• Turing machine with suitable input, given adequate time. So we can regard the Turing 

machine   as   being  ideally  general  over  our  domain of interest.    However,  this   is 

• this leads to an interesting hypothesis, that multistability effects may be artifacts of 
visual methods for dealing with motion. 

-     -        -   



17- 10 

generality in principle, and it does not necessarily give us workable approaches to 

assimilation problems. One way which the usual representation of a Turing machine 

departs from feasible methods is in requiring unbounded amounts of input specification. 

The knowledge of the problem solving method must be encoded in rather circuitous 

ways in the input. If we are unable to specify the problem solving method to any 

machine, then we are also unrbio to specify the proper problem input for the Turing 

machine. 

There is a continuum of degrees of specification requirec by various problem solving 

methods. Oi course, we prefer short and simple specification of a problem if it works; 

the classical Turing machines tend to operate at the other end of the spectrum. One of 

the important dimensions of evaluation of any assimilator concerns the degree of 

specification required in order to accomplish a task. This dimension is discussed for the 

Slate system in the next section. 

This section assesses the amount of specification of problems which is required by 

the Slate system. We would like to know whether the Slate system has the kind of 

excess specification problom to which the classical Turing machines are subject. We 

would also like to know within broad limits how graph specification compares with other 

representations. 

Problem specification for the Slate system consists of three parts: specification of 

chunks of knowledge, provision of input graphs, and provision of a task-specific 

operator or operators which uses the other operators of the system as major resources. 

Without specifying the particular task which we want to project, we have no way to 

' 

. i .^^I^M 



17- 11 

estimate the latter part of the specification.   However, we have a basis for considering 

the other parts, since we can compare knowledge and inpi/ graph specifications to 

specifications in other media. 

In particular, we can compare graphs to natural langubge assertions which they 

encode. For example, we may use various combinations of assertions in English for 

representing the word "SUCCESS".» 

Ccnsiier how we might represent the word "SUCCESS," giving enough information so 

that the word could be recognized in text and included in a syntactic parsing according 

to a simple grammar. What do we know about "SUCCtSS" which must be represented? 

These assertions, in some form, seem essential: 

1. It is a word. 
2. It has seven parts which ar«. utters. 
3. The first letter is "S." 
4. The following letto- is "U." 
5. The following let'er is "C." 
6. The following letter is "C." 
7. The following letter is "E." 
8. The following letter is "S." 
9. The following and last letter is "S." 
10. It is a noun. 

This English-language representation of the word has 10 assertions containing a 

total of 52 symbols. 

• We use English simply as our available representative natural language.   We expect 

the same properties of Russian or Hopi. 

—"— — 



17- 12 

"SUCCESS" is a seven letter noun spelled "S", "U", "C", "C", "E", "S", "S".    This 

descnptio- contains 14 symbols. 

Assertions such as 8.   alove really carry 4 different items of information: 

It is a letter, 
It follows a certain entity, 
Its value is "S", 
It is part of the word. 

The set of assertions rafers to eight different entities, the word and the seven 

letters which are referred to by the pronoun "it" or by implicit reference above.   Wo 

can give these arbitrary names, XI, X2,...   through X8. 

Separating assertions and using explicit reference to the entity names, we have: 

XI has symbol value "SUCCESS" 
XI is a "WORD" 
XI is of type "NOUN" 

X2 is a "LETTER" 
X2 nas symbol value "S" 
XI begins with X2 

X3 is part of XI 
X3 is a "LETTER" 

The explicaho version, «till in English, contains 129 symbols, and thus is an order of 

magnitude larger than the compact statement above. It is rather close to an arc-by-arc 

reading of the corresponding word chunk. 

The corresponding graph has 20 arcs, but only 34 symbols, since vertices occur only 

once in graphs. Here each occurrence of a relation name on an arc is counted as a 

symbol. 

•.     —-—  -■"■■ —-..J_^____«—■», 



17- 13 

In tsrms of this gross symbol counting we can see that the symbol count of 34 of 

the graph falls in the span of some comparable representations of the same information 

in English, (14 to 129 symbols), and that the more efficient English representation 

contains about half as many symbols as the graph. Since we are not using a 

particularly rich segment of English here, we should expect that some specifications will 

be much more concise in natural language than in graph counterparts. 

We can use the machine code example above to consider natural language, program 

source language, machine language and graphs. 

"The program computes the sum of the integers in the inclusive interval 
from MUM to 0. It has a routine which computes the correct result for 
positive parameter values, using the formula n*(n+l)/2. The program calls 
the routine with a positive parameter and then negates the result if MUM 

was negative.' 

Let us first compare this description, which has 59 symbols, with the program which 

it represents. The overlap of symbolization is quite small. The program, which contains 

56 symbols, is mainly i particulanzation of aspects which were left unspecified in the 

description above, which did not even namj the source language. The program does .lot 

mention the sum-of-integers notion or the fact that the routine always receives a 

positive parameter. It does express the existence of the routine and the two-case 

character of the computation expressed by "if NUM was negative." 

The machine language program produced by the Bliss compiler contains 26 

instructions. The instructions vary in their opcode, address and register fields, so we 

may consider each instruction to be 3 symbols. Thus the compiled program can be 

regarded as rü arrangen.ent of 78 symbols.   The comparable result graph, represented 

^—  -ii—        i 



17- 14 

by the combination of Figures 9.12 and 9.16 has 131 arcs and a total of 202 symbols. 

The input graph for this example had 58 distinct symbols. (Figure 9.5). It represents 

part of what was expressed in the Bliss program and part of what was expressed in the 

compiled instructions. 

Counting symbols yields only a crude measure of the bulk of specification, and our 

examples are further complicated by the differences between the contents of various 

objects above. However, it is clear that the expression of input information in graph 

form does not require amounts of specification which greatly exceed the amounts 

required in natural language or algebraic proiiramming language. 

We could argue that i( is unfair to compare a natural language statement to a graph 

which "expresses the same thing" because the content of the natural language 

expression is ner ssarily juoged after intsrpre. tion by a person. In order to make 

proper comparison we should consioer the effects of interpretation by the graph 

processor. 

To make this comparison we must use the graph processor as an explicator. We 

find i result graph that "expresses the same thing" as a particular natural language 

stat nent; then we may compare the statemam with the input graph which led to that 

rb>ült graph. Consider the first explication task. This is a Bliss select statement which 

has three sections." That statement has 10 symbols. The graph given for explication, 

Figure 10.1, also has 10 symbols. It is arguable whether the statement carries ali of the 

information which is made explicit in the result graph shown in Figure 10.2, which 

contains 35 symbols in 47 arcs.   For most Bliss programmers, it does not, since they 

—-   -    —■-- - - 



17- 15 

need not be familiar with the machine code produced. 

The notion of information in two different representations "expressing the same 

thing" thus involves both interpreters, and some kind of parity of the Knowledge 

presumed by each. It is interesting that in this example the symbol counts are of the 

same order of magnitude. 

As the number of chunks in a system increases, it may be that the s.ze of the input 

graph required to produce particular res^t yraphs tends to decrease, the remainder 

being supplied by further explication. Wo would then say that the system was requiring 

decreasing amounts of input specification, or alternatively that its behavior 

corresponded to that of a more knowledgeable human. 

KNOWN LIMITATIONS OF METHODS 

LIMITATIONS Of METHODS IN INPUT TRANSLATION 

This section examines the two input translation proccssc i which produce the graph 

representations of knowledge and input üssortions from the oxtörnal problem. 

Currently these are manual processes. 

What constraints are placed on the representation of problems by the necessity to 

encode them in graphs? There are a number of underdeveloped areas of the graph 

notation which are made visible by attempts to represent various kinds of input. We 

will  review a number of these, together with approaches to improving the graph 

-•  - ■  - -   '-  



17- 16 

notation in order to accommodate them. For most of these, the problem can appear in 

translating either the Knowledge base or the input assertions, depending on the 

p.rt,cular task at hand. We will therefore discuss the two input representMion 

processes together. 

The rules for acceptance of arcs allow any arc to be inserted which is not 

inconsistent with arcs which are present. It is therefore easy, for example, to assert 

part-whole relationships of various Kinds, but diff.cult to .ssert a lack of a part-whole 

relationship. If we want to describe a person who has no right hand, the sort of 

relations which we hive been using will not suffice.   Simply failing to assert: 

Joo 
is the name of 

Hand ^^ 
is of type 

4 
is part of 

H   -•- Right 

is the side of 

will not work, since the system fills in expected parts freely (as in the explication tasks.) 

A related problem involves the completeness of parts of graphs. Suppose we wish 

to represent that X. Y and Z, and only these, are owners of W. The joint ownership can 

be pos.ted easily in simple relations, but we have no simple way of excluding other 

owrors. 

—. ^_ ,    , , ,   —  --- ______•. 



m^—^mi^m   

17- 17 

Two appro-chss to these problems appear attr?ctive. The first mvo.ves structure 

within chunks. The chunKs used In all of the examples were unstructured in the sense 

that any arc of the chunK had only one role, that of member. We can define a new role 

for arcs, that of denied arc. to prevent .mprooer assert.ons and to maKe some desired 

ones.   In this example, the input gr.ph mi^ht appoar as shown in Figure 17.3 . 

Is owned by 
TOK— W 

[DENY] 

Figure 17.3 - Denial of Relation Arc 

The processing which manges itortgo would have to prevent storage of any arc 

which matched a denial arc up to substitution of tokens. 

A second approach invulves the use of denial chunks in input or knowledge. The 

rule is that If the chunk can be mopped onto a set of present assertions (i.e. without 

«dding new assertions to the graph), then tho combination of assertions onto which it 

maps is denibd.   The effect would be to reject the last access.on of the set. 

Another minor representation problem concern the present methods of using tokens. 

Suppose that we want to have a chunk which will map onto any occurrence of a double 

totter, in task. don. in the style of the letter and digit string tasks already presented. 



^nt^mmi ■ -—- -■■ 

17- 18 

We might consider the chunk of Rgure 17.4 to be appropriaf«. 

DOUBLE LETTER 

is an instance of 

T0K1 

T0K2 

T0K4 

Figure 17.4 - Chunk for Recognizing Double Letters 

This chunk will not work. The difficulty is that the intended range of T0K4 is 

certain constants, the names of the letters, whereas our mapping discipline maps tokens 

only onto other tokens, and constants only onto themselves. A class of vertices whose 

range was constants would probably remedy this problem, at a small cost of additional 

processing. 

u    - -   ■ - -  ■    ■ - 



  

17- 19 

Mary situations require description of sets having a plurality of members. "Our 

galaxy contains about ten thousard visible stars." Thj present descriptive scheme would 

have to be expanded to provide for such assertions. Description style for typical 

members of sets needs to ba developod. The special feature of such descriptions is 

that single arcs represent multiple assertions which must be separated under some 

circumstances and (for efficiency) not under others. 

Similarly, the notation does not yot express interval notions well. We would like to 

be able to say, in the machine code task, for example, that all of the code from the start 

of X to the finish of Y implements one contiguous source code expression. This can be 

done, but only very awkwardly. 

These deficiencies, involving denial, token mapping range, plurrlity and intervals, are 

relatively minor and would seem to bo correctable without wholesale redesign of the 

system. In contrast, *he system has no representation for time, and no immediate 

prospect for dealing with time dependency notions. The present system develops 

consistent sets of jointly held assertions which never change their truth values. A 

system representing time phenomena must handle assertions whose truth values change. 

The present system offers a base for developing those portions of a time-dependent 

representation which are "instantaneous,* but leaves the instant-to-instant motions to 

other processes.   It remains to be seen whether this is a viable factorization. 

This is not to say that no ti^e phenomena can be handled by the system; the 

Miller-lsard examples certainly dealt with time-soquenced phenomena for which temporal 

order wo Important   We finessed the timo-reprosentation problem there by making 



■T^^^^^l -i   " '*■ -     .«-..»..    11   m .*■■      . .   -.■ w *«*  -'-'^ — w •   i   -.... -■   .!■■ i   HIW-.I i-   I^II^I.   ■». -*» •--■       i     ■!    mmmWwm*m   i .*•«*•*-«    ■ iiMHiiwp 

17-   20 

assertions about the compositions of sequences, using only the sorts of assertions which 

have single truth values. 

A..other interesting Kind of representation problem involve» exceptions to parts of 

entities which would normally be represented by chunks. If we have a chunk describing 

a "book" which asserts that it has a plurality of 'pagos' we should be able to use the 

chunk to recognize a "book without pages,* a kind of exceptional book. The present 

notation does not provide» for such exceptions. 

An approach to expressing the exceptions is to provide a chunk structure role which 

marks arcs as being exceptions to expectations set up by chunks. Methods for dealing 

with such arcs would be needed for both the condition in which they appear as part of 

the input and the condition in which they appear as part of the knowledge. 

AMBIGUITY AND REPRESENTATION OF ALTERNATIVES. 

A different kind of expressive limitation involves ambiguity or alternatives of 

chunking the input. In the tasks which we have implemented, we see the Slate acting as 

^ one-hypothesis memory in which a particular view of the input graph is worked out by 

the mapping operator under what ever task processor is in use. The fact that only 

sngle views Of the input appear in the slate is not inherent in the mapping scheme. 

Rather it arises from the constraints used and the forms of the chunks. There was no 

explicit effort in the design of the system to exclude alternate valid chunkings of an 

input graph.   It it the measures to disallow improper chunkings, sets of arcs which are 



17- 21 

not  faithful represent«tion$ of th« content of the input, which have turned out to 

disallow valid alternate chunkings as well. 

For the word assembly parts of our STM tasks, only one word is allowed to contain 

a particular letter symbol. This constraint is enforced by the properties of the "is the 

symbol of" -elation. In the syntactic parts, only one higher construct Is allowed to 

contain a lower construct, as enforced by the properties of the "has subpart" relation. 

By axcluding errors which would violate these constraints, we exclude overlapping 

proper analyses of the letter strings as well. 

Mow is the particular analysis which appears in the slate chosen? Given an input 

graph and a knowledge base, there are two principal modes of variation of the result 

graph: 

1. Different  sequences of presentation of chunks for mapping 

yield different sets of accepted chunks. 

2. Particular chunks may map into a graph in more than one way. 

The slate system presents cl ks for mcpping in a rank order which is built up 

during the search for chunks to map. Chunks are ranked by the number of const-nts 

which they have in common with the query by which they were found. Chunks which 

span larger numbers of constants tend to be those which coordinate separate parts of a 

graph. These tend to be chosen over those which contribute only to small regions. For 

all of our tasks so far, this has been an effective way to choose. A previous version of 

the system which presented chunks in order of discovery also wor^d reasonably well, 

and saved some search effort. 

  



*rmmrmTmm.w~'^<~~~m!>'»" " ' "'"!■<       ,.-......... ..n. . ... ..u ,M I I   IUH   ,••,,— .   . < < ■   j 

17- 22 

Differences in chunK acquisition sequence need not result in differences in final 

result. Often several permutations of chunk acquisition order will yield the same result 

graph. Certainly for the machine code problems in which several kinds of control 

structure were represented in one graph, any of the control structure groups could 

have been recognized first without affecting the outcome. 

For other tasks, the earlier selections determine later ones. If we are performing 

word assembly on the sequence: 

THEREPEAL 

we might consider the following 9 words as candidates to map in: 

THE (3) 
THERE (4) 
HE (2) 
HER (3) 
HERE (3) 
ERE (2) 
REPEAL (5) 
PEA (3) 
PEAL W 

Many others would fail on boundary or order constraints, such as OTHER and PEAR. 

Given the whole string, the system would chunk THE REPEAL since REPEAL has ■ 

span of 5 different letters.   Inputting serially from the left, we might get THERE PEAL 

Others, like HERE PEA, could not occur because THERE would always look better than 

HERE. There is no way that two of these stable (unextendable) chunkings could coexist 

in the result graph memory, because the "has subpart" relation used to relate words to 

letters r xcludes the possibility. 

- 



17- 23 

The other kind of result variation involves differences in the set of accepted 

assignments. A particular chunk may be mapped into a graph in more than one w.y. 

This hat been shown In detail in the chapter on the Necker Cube. 

SUMMARY 

This chapter evaluates evidence that the information processing methods used in the 

Slate system can be applied to assimilation problems in general. The methods are found 

to be task-independent and effective on a broad diversity of tasks. Almost every part 

of the system contributes to its performance on several tasks. The amount of 

.pecification required a. input to the system is roughly comparable to the amount 

required by • programming languae. or natural language. The primary limits on its 

generality are limitations on the range of concepts wh.ch are easily expressible in the 

notfdon. 

■ ■    - ■       _ .   -      -.   .. . 



f* -"«-'■» PPF^iW^^I^^ 

COMPARISON WITH OTHER SYSTEMS 

CHAPTER 18-1 

There are several complex systems which include major parts for match specification 

and control. They include the SNOBOL family of languages, QA4, CONNIVER and the 

PLANNER and MICROPLANNER systems. It is of interest to understand their similarities 

and differences relative to the Slate system in order to identify its methodological 

contributions. We choase SN0B0L4 as representative of its family, and QA4 as 

representative of the lattrr group, which are all LISP-based. [GPP71 j, [R/2] The control 

structure discovery tb'K is a convenient assimilation problem for these comparisons. 

The Slate system is similar to these other systems in that it has a fixed match 

process ard is uncommitted on how the control of the use of the match process shall be 

done for particular tasks. They differ in that the match proceses of SN0B0L4 end QA4 

are embedded in general programming languages, whereas the matcher of the Slate 

system Is not.   To compare a them, we consider these questions: 

1. How could the match process of the language be used to find the 
acceptable correspondences of input data with stored chunks 
(corresponding to the set-of-assignments selected by the Slate 
system?) 

2. What are the differences between the existing Slate system and 
the projected implementation? 

3. Which differences ren"*0nt inherent features of assimilation for 
which no appropriate control structure is provided? (Th.>se are 
therefore not merely limitations induced by correspondence with the 
Slate system.) 

 , ■ ■   ■  - -  mmi i  - 



w^w***-*w^*mr* ■ i  !  ■ '  

18-   2 

STRING MATCHING ASSIMILATION 

In order to be able to consider input information in 3 definite string form, assume 

that a possibly incomplete assembly listing of a compiled program is available.« 

The representation for an abstract object to be matched in SN0B0L4 is called a 

pattern. We can consider having a different pattern for each chunk to be matched 

•gainst given information. Patterns may have alternatives as subparts and a subpart 

may Itself be an arbitrarily complax pattern. The SN0B0L4 interpreter includes « 

pattern matcher which is used to control the search for a matching instance of a pattern 

in a given string. Failure of a subpattern to match leads the pattern matcher to 

backtrack over previous subpattern matches in order to find new subpattern matches 

which will cause the entire pattern to match. The overall match operation may fail or 

succeed. If it succeeds, there are ways to make specified complex changes in the region 

of the string which constitutes the matching part. 

If several parts of a string are required to be equal for a pattern to match, the 

conventional way of expressing this is to use several subparts in the pattern. The first 

is given a side effect of assigning »he value of its matching substring to a variable as 

soon as it matches. The other subparts are matches for the pret e of the value of 

the variable. In order to discover that a particular assignment in the first subpattern is 

incorrect because there are no acceptable equal substrings to match the other 

subpatterns, the entire string must be searched, and the matching of the intervening 

♦ We may assume that the form of this listing is constrained in various ways which make 
the task easier. The difficulties which arise are not at the level of finding the meaning 
of the content of the listing. 

__.   ■ ■   ■--  
-"—■—'''■■"'-   - ■  -   -   - 



w**mm*^*^^***^T^*mim,em 

18-   3 

parts of the pattern must take place in order to reach the proper context for matching 

the litter subpatterns. This leads to gross inefficiencies in instances in which there are 

«ubparts of the given which are required to be equal but are separated by other 

subnattems. 

■^ince »he information we are assimilating may be incomplete, the parts needed to 

match the first subpattern may be missing, leading to an inability to use tht subsequent 

subpatterns even though the parts of the string which they should match are present. 

This case is detectable, but it leads to a necessity to anticipate the possibiRies, and in 

general to enumerate the acceptable incomplete inputs as pofterr alternatives. 

(Processing such alternatives one at a time would lead to further multiplication of effort.) 

The enumerated Incomplete input pattern alternatives would also have to contain 

prov;5ions for side effect« which completed the input with information Known w^hin the 

patte n at success time. 

Tne difficulties above, and several mora, arise from the fact that SN0B0L4 is 

designed to perform complete pattern matches, whereas assimilation must occur over 

incomplete given information. Even the arbitrary-string pattern element of SN0B0L4, 

called ARB, must be 'ocated in places which are anticipated at pattern formation time 

rather than at match time. 

There are further control complexities which we need not spell out in detail: 

1. The need to make the result tend toward a best-match, not just a 
sufficient one. Since order of occurrence of possible matches is fixed 
by the SN0B0L4 intorpreter, it would have to use a comparative 
method If the pattern matcher were in control o*. the match. Tne 
Slate system uses a constructive method. 

■     --^.^-^ .   .  -.-.--   -.—..-■—^- 



18-    4 

2. The nood to rojoct matchos that violate constraints, such as the 
restriction that a particular instruction can be a part of only one kind 

of control structure. 

These become complicated by other problems if tasks such as Meeker cube chunking 

are considered. The fact that the statement of the given information may be found in 

any of several equivalent permutations must be anticipated If the given information Is 

nominally string structured. 

The Slate system gains real advantasos from the differences between graphs and 

strings. Chunks are small connected graphs which can be explored in their entirety by 

short local searches. They moy span what would be long intervals (of machine code, for 

example) in corresponding string representation. Also, they have immediate means for 

determming equality, since joint use of a token is the representati- »or equality in two 

assertions. All other occurrences of a token are directly accessible from the first 

occurrence, so that tests noed not be postponed until a later rediscovery. That this is 

important is indicatod by the very beneficial effect of the rorced assignment heuristic, 

which makes uio of this immediate acoss. Groups of related parts form small 

neighborhoods in graphs, where they may necessarily be dispe sed in the corresponding 

strings. 

On th« other harvl, maintainina the graph representation for strings in the current 

Slate system Is relatively expensive. 

The  principal  deficiencies of  the SN0BÜL4 match facilities for the  assimilation 

k 'Oblem arise because it performs only matches which are complete with respect to the 

    —^- ll-^ 



■^■IBPiWBPWWWPPWHBPi^^^B^^i^WW^Pl""!^^«^^"*1"'"''    »wi*im ii-^»"i^^^*^M^^w^FWW-i^i   iiiui.iiii'W"«-""""»* ■■ ■ 

18-    5 

given pattern, that matches occur in a fixed rjther than a controllable order, and that 

the methods for testing for equality of parts leuJ to serious inefficiencies. 

QA4 MATCHING 

There are a numbor of kinds of QA4 objects that can be used somewhat as SN0B0L4 

patterns are used.   A representative one for cur purposes is the SETQ expression, 

which binds varinbles found in one arbitrarily complex expression to values derived from 

another arbitrarily complex expression.   QAA   .as unordered sets as one of its object 

types.    The  SETQ selects correspondences of variables with values by  a matching 

process  which recognizes the fact that there ray be multiple ways to select the 

correspondence, as in the following example: 

EXAMPLE: (SETQ (SET «-X «-Y) (SET 1 2) GACKTRACK). 
Evaluation of this expression will establish 2 backtrack point and bind 
X tc 1 and Y to 2. Failinj back to the SETQ estiblishes the binding X 
to 2 and V »o 1. If a faiiuro occurs once more in the subsequent 
program, no ne~ binding is possible and the statement fails. 

They   all   share  two  of  the  chief  drawbacks of  SN0B0L4, that  complete   matches 

(assignments of  all variables) are  being performed, and that the interpreter tries 

alternatives   in   a   fixed   order   not   subject   to  program  control.     The   handling   of 

incompleteness is thus forced outside of the matcher, as it was in the SN0B0L4 case. 

There Is no opportunity to seek the bast match first while letting the match controller 

do  the  selections of assignment.    An assimilation program which used the  match 

controller   for   its   basic   correspondence   testing   would   necessarily   have   to   use 

comparative rather than constructive means for finding good ways to map chunks, with 

 - -   --       ...■.- 



1' ■ '■■' ■ 

18-   6 

di8B9»rOu9 anumerative consequences. Wh.le the QA4 match processes might be useful 

in other ways in a reimplementation of the Slate system, they are inappropriate for the 

top level matching for assimilation. 

We have seen in the examples above that the differences between complete match 

methods and partial match methods which seek "good" matches are pervasive, and that 

there seems to be no immediate adv.ntage in trying to use the complete match control 

structures for selective construction of partial matches. Minsky and Papert have noted 

related consequences in studying the speed cf various match methods: [MP69] 

GLOOMY PROSPECTS FOR BEST MATCHING ALGORITHMS 
The results in ...    showed that relatively small factors of redundancy in 
memory size yield very large increases in speed, for serial computations 
requiring discovery of exact matches.   Thus, there is no great advantage in 

using parallel computational mechanisms.   ... 
But when wo turn to the best match problem, all this seems to evaporate. 
In fact We conjecture that ov^n for the best possible (comparand)...   pairs, 
the sptad-up valua of larga mb-nory redundancies is very small, and for 
lorco data sots with long word lengths there are no practical alternatives to 

lorco coarchos that in^oct Icrga pcti of tha memory. 
Wa BOtesisa for r.at havhU a nara prodM ststament of th« conj«ctur«f or 
cood cu^cstlOM for how to provo it, for wa f«al that this I« a fundamtntally 
importcnt point in tha tlwory d computation ... 

It is clear that the differences botweon complete and partial match methods are 

pervasive, and that both have significant places in a theory of general intelligence. 

—   —■  -——— "• 



—'^—^   " 

CONCLUSIONS 

CHAPTER 19-1 

The principal contributions of this thesis toward a general theory of intelligence are 

«ummarized below. We have defined the class of "assimilation problems," which ere 

problems of making available information useful by application of prior knowledge, and 

have developed a representation and a process (the Slate system) for solving some of 

them. Trv resulting theory contributes to psychology as a model of human short term 

memory, and to information science as an effective collection of new general methods. 

The vehicle for study is a computer program, the Slate system, which manipulates 

knowledge and experience represented as labeled directed graphs. As a model of short 

term memory, it explains how people group information into meaningful units, (chunkh g,) 

at they do when hearing familiar phrases or grouping digits according to a code. It also 

explains why their capacity for remembering items over short intervals varies with the 

task content, according to the "shared workspace effect." The presence of items 

belonging to unassembled groups reduces people's capacity to remember assembled 

groups. The larger the group size, the more of their capacity must be used for 

unassembled partial groups. The variation in capacity is explained as the use of a small 

memory having a fixed capacity of items, shared between chunked and unchunked items. 

The model also identifies serial behavior in assimilation as a restriction against 

holding two mutually- and locally- contradictory hypotheses in memory at once, in the 

Slate system this is part of the memory function itself, and the processes of knowledge 

search and application are potentially highly parallel. 

IIIIMM—MawiM 



■ ■' —— 

1S- 

Tho system performs assimilation tasks with features that other models are not able 

to deal with. It operates on given information which represents several different 

objects presented together, with each being incompletely specified. This contrasts with 

process models of human perception which m st receive their stimulus information one 

whole stimulus at a time. The system is responsive to the syntactic organization of 

incompletely specified (noisy) information representing word sequences. It is able to 

analyze, hold and repeat grammatical noisy sequences which are much longer than the 

longest ungrammatical sequence which it can repea.. 

The model embodies a .seful new representation for concepts and experience. The 

representation is concise v applicable to a wide varit • of tasks. It has been used to 

express knowledge which relates computer instruction sequences to control structure 

constructs in a programming language, to represent the Necker cube and model its 

"reversal," to represent codes 'or grouping binary digit:,, the letter structure and 

syntacti; categories cf English words, and simple grammatical constructs. All of these 

have been applied to assimilate suitable given inforr.-.dtion. 

The process for assimilation relies on a match process which differs from 

conventional ones in that it seeks a good partial match of a pair of graphs, allowing both 

to have unmatched parts. There is a copying process which transfers and particularizes 

the knowledge in the concept chunk into the Slate with each successful match. To 

combat the combinatorial difficulty of selecting a ^ood partial match on two graphs, 

several directive heuristics have been developed. The match is a constructive process 

with its backtracking confined to a very local context involving a single assignment. 

  ■ --■ --' - ---     - - ■■ ■        - ■ .. .^-  -. — --.  ^_ 



■■, 

19-    3 

The present implementation has been pushed to rather soft limits on speed end 

ability to represent phenomena. It is clear that a much more capable system could bo 

developed on the basis of present knowledge, and that the methods developed can be 

used as a basis for dealing with a wide variety of other phenomena and tasks. 

--- - --— uvimamu-mmummmmtmmmmmmmmtmmttmimi  -    u^—^^—^—^^—a.«i J 



^^mmm*mmmi^m^m~^-m—mm~—mm^m~m— 

BIBLIOGRAPHY 

[A68]        Anderson.     1      A.    FRAN:    A     Simul^on     Model     of     Free     Recall      in 
Piycholoty      of      Loarnini      and      Motivation      5,      G.        Bower,      ea., 

Academic Press, New YorK (1972). 

[A71]       Attneave,    F,    Muitistability    In    Perceptir „    Scientific    American    225.    6 
(December 1971), 62-71. 

California      Institute      of      Technology      REL      Report      Number       7, 

(February 1973). 

[B69] Bower, Q. k. Chunks as Interference Units in Free Recall, JVLVB 

8, (1969), 610-613. 

[BW69] Bower, G. K and Wnzenz, D., Group Structure, Coding, and 
Memo.y for Digit Series, JEP Monograph Vol. 80, No. 2. 

Part 2.   (May 1969). 

[BF71] Bransford, 1 D. and FranKs, I I. The Abstraction of 
Linguistic Ideas., Cognitive Psycholc^y 2, (1971), 331-350. 

[C65] Chomsky, N., Aap^t. of the Theory of Syntax. MIT Press, Cambridge 

(19O5), 9. 

[E61] Eastman, P. 0, Go, Dog, Gol. Beginner Books Division of Random 

House. (1961). 

»^^^^^^MMWMIMa 



k -II' II III 11 '■■■   ■■■■        

BIBLIOGRAPHY 

[E65]        Ell ott,     R.       W,     A     Model     for     a     Fict     Retrieval      System.     Ph.D. 

Thesis, University of Texas, (May 1965). 

[EN693 E-nst, Q. and Newell, A, GPS: A CaM Study in G«>erality end Probl«m 

Solvlng, Academic Press, New York, (1969). 

[F59]        Feigenbaum,     E.       A.,     An     Information-Processing     Theory      of      Verbel 

Learning, Ph.D.   Thesis, Carnegie Institute of 
Technology, (1959). 

[FS62]     Feigenbaum,     E.       A.       and     Simon,     K       A, Generalization     of      an 
Elementary       Perceiving       and       Memorizing Machine,        Informetion 
Proeeuing      1962:      Proeeedingt      of      IFIP Congr«*      62,      Munich, 

(1962), 401-406. 

[GS67] Gregg, L W. and Simon, K A, An Information-Processing 
Explanation of One-Trial and Incremental Learning, JVLVB 

6, (October 1967), 780-787. 

[GPP71] Griswold, R E, Poage, 1 F. and PolonsKy, I. P., Th. Snobol* 
Programming Language, (2nd Ed), Prentice-Hall, Englowood 

Cliffs (1971). 

[G68] Guzman, A., Computer Recognition of Three-Dimensional Objects in a 

Visual Scene.   Ph.D.   Thesis, MIT, (1968). 

[M68] Martn, 1 G, Temporal Word Spacing and the Pe^eption of 
Ordinary, Anomalous, and Scrambled Strings, JVLVB 7, 

(1968), 104-157. 

[M68B] Martin, 1 G, A Comparison of Ordinary, Anomalous and Scrambled 

Word Strings, JVLVB 7, (1968), 390-395. 

[M56] Miller, G A, The Magical Number Seven Plus or Minus Two: Some 
limita on Our Capacity to Process Information, Peyeholoiieal 

Raporta 63, (1956), 81-97. 

-      -      —-    - - --  -       in i - -    -■  —^*M 



BPPMH^ ■"      '■    ■ 

BIBLIOGRAPHY 3 

[MI63]      Miller,     GL       A.       and     Isard,     S.,     Som«     Perceptual     Consequences     of 
Linguistic Rules, ALVS 2, (1963), 217-227. 

[MP69]      Minsky,     M.       L       and     Papert,     S.,     Perceptrons:     An     Introduction     to 
Computsiional Geometry, MIT Press, Cambridge (1969). 

[M73]        Moran,    Thomas    P.      The    Symbolic    Imagery    Hypothesis:    A    Production 
System        Model. 0h.ü. Thesis,       Department        Of        Computer 
Science, Carnegie-Mellon University (December 1973). 

[M69]        Morton,   1,   A   Functional   Model   for   Memory,   in   Advances   in   Psychology 
7,(1969). 

[M70]        Morganstein,    S.,    Effect    of    Encoding    on    Short-Term    Memory,    JEP    86, 
3, (December 1970), 387-392. 

[N66]       Neisser,     U.,    Cognitive    Psychology,    Appleton-Century-Crofts,     New     York, 
(1966),221. 

[N73]        Newell,    A     et    al.    Speech    Understanding Systems:    Final    Report of    a 
Study         Group,        published         for Artificial         Intellegence by 
North-Holland/Amorican              Elsevier,             Amsterdam/New York, 
(1973).   Chapter 7. 

[NS72]      Newell,    A      and    Simon,    K      A,    Human    Problem    Solving,    Prentice-Hall, 
Englewood Cliffs (1972). 

[N71]        Nilsson,      N.        J.,      Problem-Solving     Methods     in     Artificial      li>tellig«nc«, 
McGraw-Hill, (1971). 

[PJ65] Pollack, I. and Johnson, L B, Memory-Span with Efficient 
Coding Procedures, American Journal of Psychology 78, (1965), 
609-614. 

I   ..^^^^^MtiMlMtMlirtl—fM—I ■■■»■■MM^BMM ■■-■--- 



vmimtmmimmumm^^mmm^mmmKmmmmmmmmmKmmmmmmf^mmBmmKmmmmmmmmmmmmmmmmmmmim 

BIBLIOGRAPHY 

[Q64] Qullliin. M. R, Stmintic Memory, Ph.D. Thesis, Cernegie-Mellon 
University Computer Science Department, (1966). 

[Q69] Qulllisn, M. R, The Teechable Language Comprehender: A 
Simulation Program and Theory of Language, CACM 12, 
No.8, (August 1969), 459-476. 

[R72] Rulifson, i F, QA4: A Procedural Calculus for Intuitive 
Reasoning, Ph.D. Thesis, Computer Science Department of 
Stanford University.   (November 1972) 

[SF64]     Simon,    K      A      and    Feigenbaum,    E.      A,    Ar     Informetion-Processing 
Theory        of        Some        Effects of        Simlarity,        Familiarization, 
and      Meaningfulness      in      Verbal Learning,      JVLVB      3,      (October 
1964), 385-396. 

[SG73]      Simon,   H.     A     and   Gilmartin,   K.,   A Simulation   of    Memory    for    Chess 
Positions,      Cognitive      Psychology 5,      No.        1,      (July       1973), 
29-46. 

[S70]        Shulman,    H.      G,    Encoding    and    Retention    of    Semantic    and    Phonemic 
Information       In       Short-Term       Momory,       JVLVB       9,       No. 5, 
(October 1970), 499-505. 

[SF61] Simcr«, H. A and Feigenbaum, E. A, A Theory of the Seriel 
Position Effect, The RAND Corporation report P-2375, 
(July 18, 1961). 

[T64] Treisman, AM, Monitoring and Storage of irrelevant Messages in 
Selective Attentloa   JVLVB 3, (1964), 449-459. 

[T68]       Tulvlng,    L,    In:    Dixon,    T.      and    Norton,    D.      (eds.).    Verbal    Eehevter 
and        General        Behavior        Theory,        Prentice-Hall, Cng!. vood 
Cliffs, N  JL, (1968), page 10. 

  -   —   ' "" 1 - I     ■—- ■-      Ute -- --     ■ ■■     ■      ---   ■   -     ■ j.^^^^MfcM.j—^Jfc 


